EXECUTIVE SUMMARY

Music is an essential piece of the culture of south Louisiana. Three genres – Cajun, Swamp Pop, and Zydeco – grew up in this region. The genres developed as separate cultures, primarily Cajun and Creole, developed and blended before entering a period of cultural assimilation in the early twentieth century. The music, and the social dancing that accompanies it, is tied to commercial dance halls and lounges that began to appear in the state around 1900. The dance halls have evolved along with the culture, with several distinct types developing through the century.

Despite their significant place in the region’s history, dance halls are not yet recognized in any official capacity, including the National Register of Historic Places. The Center for Louisiana Studies is collecting information about the extant and demolished buildings to advocate for the preservation of the dance hall culture. I am contributing to this advocacy effort with a National Register of Historic Places Multiple-Property Submission for all extant historic dance halls. I also am seeking to understand the factors that are contributing to the demolition of these historic buildings.

For this project I used information gathered from multiple sources to map the locations of all known extant and recently demolished dance hall buildings in south Louisiana. I analyzed the locations of the buildings against five external factors that might correlate with higher rates of demolition or continued use. I also created maps to illustrate the geographic distribution of the dance halls and the development of this distribution over time. This preliminary analysis will help me to proceed with qualitative research better informed about what pressures these buildings might be facing that are not easily visible.
INTRODUCTION

Evolution of Dance Halls in South Louisiana

Music is an essential piece of the culture of south Louisiana. Three genres – Cajun, Swamp Pop, and Zydeco – grew up in this region. The genres developed as separate cultures, primarily Cajun and Creole, developed and blended before entering a period of cultural assimilation in the early twentieth century. The music, and the social dancing that accompanies it, is tied to commercial dance halls and lounges that began to appear in the state around 1900. The dance halls and their use have seen parallel development through the twentieth century for both cultures, following general trends of cultural isolation to assimilation to pride; family orientation to adult orientation and back; and gradually decreasing (though never fully diminishing) racial segregation.

Both Cajun and Creole dances originated as small weekly community gatherings in residences with small groups of musicians. Though these house dances continued through the 1950s, they gradually were replaced with privately owned commercial dance halls beginning around 1900 and gaining momentum in the 1930s and 1940s. This time period saw the beginnings of accelerated cultural assimilation as well as a stigma toward the French language, bolstered by a state law prohibiting spoken French in public schools. The post-World War II years saw a short surge in traditional music as returning GIs longed for home. At the same time, increased exposure to the rest of the country and the world accelerated cultural assimilation even further, resulting in the Swamp Pop genre as the teenagers of the 1950s blended country and rhythm and blues music but managed to retain some of their indigenous sound.

Beginning early in the 1960s, a period of growing cultural awareness within Louisiana coincided with a growing interest in the region’s culture from the rest of the United States. The 1964 Newport Folk Festival in Rhode Island, which hosted several traditional Cajun musicians from south Louisiana, is credited by several resources as a catalyst for this period of cultural shift. The Council of Development of French in Louisiana (CODOFIL) was established by the State of Louisiana in 1968. Tourism in the state surged, and in 1980 the original Mulate’s restaurant opened. The Mulate’s model, a Cajun restaurant with an integrated traditional style dance hall, became the prominent dance hall form thereafter. The dance hall restaurants of the 1980s and 1990s are more heavily geared toward tourism; however, they also served to introduce a new generation of children to the dance halls as they were no longer allowed in most traditional dance halls.

People throughout south Louisiana continue to enjoy live music and dancing at public halls. Though local residents participate regularly, tourism is a significant factor in their use. Racial segregation has lessened, and dance halls more often host musicians of all three south Louisiana genres as well as country music and other out-of-town genres. Indeed, contemporary Cajun and Creole musicians have blurred the boundaries of the genres more than ever before.
Historic Preservation

Despite their place in the region’s history, dance halls are not yet recognized in any official capacity, including the National Register of Historic Places. John Sharp, Assistant Director of Research at the Center for Louisiana Studies in Lafayette, began collecting information about present and past dance halls in 2012. The Center for Louisiana Studies intends to use this collected information to advocate for the preservation of the dance hall culture.

As a historic preservation masters candidate, I am contributing to this advocacy effort with my thesis research. My primary contribution will be a National Register of Historic Places Multiple-Property Submission for all extant historic dance halls. I also am seeking to understand the factors that are contributing to the demolition of these historic buildings. Through preliminary research, I have identified three primary recurring factors contributing to the vacancy and demolition of historic dance halls. These include:

- Death of a long-time owner or manager
- Decrease in business
- Natural disasters worsened by wood, often low-quality construction
 - Hurricane damage
 - Flooding
 - Fire

These factors are further complicated by the lack of architectural distinction of many of the buildings. Because of their vernacular character, they are sometimes overlooked by the general population as candidates for historic preservation.

To aid in this research, I decided to use GIS to explore external factors that might not be evident from studying buildings individually.

RESEARCH QUESTIONS

- What is the overall geographic distribution of dance hall buildings in south Louisiana, and how is this distribution related to their development?

- Of the historic dance hall buildings that are currently vacant, which ones are most and least at risk for demolition, and why?
METHODOLOGY

Determining Scope of Buildings

Much of the scope is determined by available data. My thesis research will focus on historic buildings constructed or opened as dance halls within an established period of significance. The period of significance begins at 1901, the construction year of the first known extant dance hall. The end of the period of significance is more complicated as it differs by associative type and subtype of dance hall building. With this in mind, I decided to use 1968, the year CODOFIL was established, as a simplified cutoff year for this analysis.

I used all active dance hall types, including restaurant dance halls, in my analysis. The intent is to study where Cajun and Creole music and dancing are occurring now, regardless of building type. The only requirement for an active building is that Cajun, Zydeco, and/or Swamp Pop live music and dancing must be hosted on a regular basis.

Data Acquisition and Shapefile Development

For locations and characteristics of individual dance hall buildings, I used a combination of data provided by the Center for Louisiana Studies, several secondary sources, and primary data collection. I created new point shapefiles for Pre-1968, post-1968, and razed buildings using Google Earth. Because of the nature of the data and collection, it incomplete and will continue for some time; therefore, the analysis could be affected by missing data.

Data sets for new point shapefiles included:

- A list of dance hall names and PLACE locations over all time; no construction dates
- A list of names and SPECIFIC locations of all known active dance halls in 1992; no construction dates
- A manually collected list of extant buildings as of 2013 with SPECIFIC locations, construction dates, and other characteristics
- A manually collected list of buildings demolished in the last decade. I added to this by using a combination of site visits and Google Earth to locate all buildings on the 1992 list and determine whether or not each one has been demolished. This was aided in some cases by Google Earth historical imagery, which allowed me to precisely locate a demolished building.

I obtained shapefiles for Louisiana parishes, roads, and major water bodies from the Census Tiger/Line website. For the five chosen external factors, I used data from the United States Census Bureau, including the 2010 Decennial Census, 2010 Decennial Census PL94 Redistricting Data, American Community Survey 5-year Estimates 2007-2011, and the Center for Economic Studies. I acquired all census-related data from online tools Social Explorer and On the Map.

All of the geographic data in this study was defined and projected to have the following metadata:

- NAD 1983 State Plane Louisiana South FIPS 1702 (feet)
Geographic Distribution

Map 1: Overall Geographic Distribution
First I created a map to determine the overall geographic distribution of known dance halls. For this I used a spreadsheet provided by the Center for Louisiana Studies including the name and location (name of the city, town or community) of each dance hall identified to date. The spreadsheet includes no additional information, including construction dates or more specific locations. I created a new point shapefile based on the center of each city, town, or community noted in the spreadsheet. I then symbolized the points using graduated symbol sizes based on the number of dance halls listed for each place. This map gives a rough idea of the overall distribution and concentration of dance halls over time.

Map 2: Change in Geographic Distribution
I then created a map to show the difference in geographic distribution during and after the historic period. For this map I displayed all extant buildings symbolized by date range (built before 1968 or built after 1968).

Analysis of External Factors

I determined five external factors that could be contributing to building demolition or active use of dance halls to analyze. The factors are based on data availability, previous research, and ideas for future research. I created each map and pulled out data for analysis by following the same basic steps:

- Symbolize census tracts or block groups by quantity using graduated colors, showing the spatial variation in the external factor.
- Symbolize dance hall buildings by status: Active, Vacant, Change in Use, or Razed.
- Isolate active and razed buildings into separate shapefiles.
- Merge all buildings into another separate shapefile.
- For each shapefile, perform a spatial join to join census tract or block group data to the shapefile. For each shapefile, this creates a field with all external factor values for only the buildings of a certain status. For example: For Median Household Income, after the spatial join with Razed Dance Halls, the Razed Dance Halls shapefile attribute table will include a field with the median household income for every block group that includes a razed dance hall building.
- Note the mean and median value of the external factor for each isolated status (Active; Razed; All) and note these values on the map for comparison.

Map 3: Dance Halls and Population Change 2000-2010
This map shows the percent change in population by census block group between 2000 and 2010. I chose to analyze this factor by block group to be able to distinguish smaller pockets of estimated new construction or demolition. Most of the razed buildings in my dataset were demolished roughly in the last decade, so the ten-year period noted in the Decennial Census was a good option to allow for population change without introducing error from changing block group boundaries.

In this map I expected to see a correlation between population loss and demolition.
Map 4: Dance Halls and Change in Housing Units 2000-2010
This map shows the percent change in housing units by census block group between 2000 and 2010. Though this factor does not measure demolition and construction of commercial buildings, it is a sufficient indicator of estimated overall demolition or construction within a specified area. I chose to analyze this factor by block group to be able to distinguish smaller pockets of estimated new construction or demolition. Most of the razed buildings in my dataset were demolished roughly in the last decade, so the ten-year period noted in the Decennial Census was a good option to allow for population change without introducing error from changing block group boundaries.

In this map I expected to see either a correlation between loss in housing units and demolition of dance halls (overall high rate of demolition) or gain in housing units and demolition of dance halls (increased construction development increasing pressure for vacant land for more development).

Map 5: Dance Halls and Median Household Income 2011
This map shows median household income by census block group for 2011. I chose to analyze this factor by block group to be able to distinguish smaller pockets of low or high income areas. I analyzed only the most current data available because I did not expect to see significant localized change in median household income over a ten-year period.

In this map I expected to see a correlation between low income and demolitions.

Map 6: Dance Halls and Cajun Ancestry 2011
This map shows the percentage of the population reporting Cajun ancestry by census tract for 2011. Census tract was the smallest geographic boundary available for this data. I analyzed only the most current data available because the method for asking and recording this information has changed, and I was afraid this would introduce too much error. For the percentage of population reporting Cajun ancestry, I added the percentages for Cajun, Canadian, French Canadian, and French to account for the varying responses that would typically indicate Cajun ancestry in this region. This map does not account for percent reporting Creole ancestry, as Creole is not an option on the census and the combination of ancestries for segments of the Creole population varies too widely for any degree of accuracy.

For this map, I was not sure what to expect. Dance hall buildings relevant to this research were historically built in areas with high percentages of Cajun and Creole population; however, the post-1968 trend toward tourism could affect this correlation. For example, the New Orleans and Baton Rouge areas both include several dance halls built after 1968 and none built before 1968. These cities historically had relatively very low concentrations of Cajun population.

Map 7: Dance Halls and Tourism Employment 2013
This map shows the percentage of the population employed in the Accommodation and Service and Arts, Entertainment and Recreation industries (as a proxy for tourism) by census tract for 2011. I chose to analyze this factor by census tract to account for the less
localized nature of tourism. Data is reported by location of employment, not location of residence, allowing for increased accuracy.

For this map, I expected to see a correlation between higher tourism percentages and active dance halls.

After noting correlations for the external factors, I created a chart (Chart 1) listing all five buildings with corresponding values for all five factors. I compared the values to one another and to the overall mean values for the factors to determine an estimated relative risk level for each factor. I noted the two vacant dance halls with the overall lowest risk and two with the overall highest risk. I then created a map showing the lower-risk buildings and another showing the higher-risk buildings for further visual observations.
FINDINGS

Due to the nature of the data, any analysis will not be considered hard fact but will serve as a guideline to inform my qualitative research in the future.

See the following pages for 10 maps and charts, organized as follows:

Geographic Distribution
Map 1: Overall Geographic Distribution
Map 2: Change in Geographic Distribution

External Factors
Map 3: Dance Halls and Population Change 2000-2010
Map 4: Dance Halls and Change in Housing Units 2000-2010
Map 5: Dance Halls and Median Household Income 2011
Map 6: Dance Halls and Cajun Ancestry 2011
Map 7: Dance Halls and Tourism Employment 2013
Chart 1: Vacant Dance Halls and External Factors: Estimated Relative Risk
Map 8: Vacant Buildings: Lower Risk
Map 9: Vacant Buildings: Higher Risk
Dance Halls and Income in South Louisiana, 2011

- **Unknown**: $0.00 to $25,000
- **Active**: $25,000 to $40,000
- **Change in Use**: $40,000 to $60,000
- **Vacant**: $60,000 to $80,000
- **Razed**: $80,000 to $150,000

Median Household Income Comparison
- Block groups with dance halls: Mean $42,698, Median $38,778
- Block groups with active dance halls: Mean $42,949, Median $37,739
- Block groups with razed dance halls: Mean $37,311, Median $37,734

Dance Halls and Cajun Ancestry

2011

Dance Hall Status
- Unknown
- Active
- Change in Use
- Vacant
- Razed

Cajun Ancestry, Reported (Percent)
- 0% to 10%
- 10% to 25%
- 25% to 35%
- 35% to 50%
- 50% to 65%

Percent Cajun Ancestry Comparison
- Census tracts with dance halls: Mean 28.47% Median 27.67%
- Census tracts with active dance halls: Mean 28.76% Median 31.72%
- Census tracts with razed dance halls: Mean 31.23% Median 29.63%

Louisiana Dance Halls

Author: Emily Ardoin | Date: December 12, 2013 | Sources: On the Map; Center for Louisiana Studies; Manual Collection | Projected Coordinate System: NAD 1983 StatePlane Louisiana South FIPS 1702 (US Ft.)
<table>
<thead>
<tr>
<th>Name</th>
<th>% Change in Population</th>
<th>% Change in Housing Units</th>
<th>Median Household Income</th>
<th>% Reporting Cajun Ancestry</th>
<th>% Employed in Tourism Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourque's</td>
<td>+9.47%</td>
<td>+14.51%</td>
<td>$46,827</td>
<td>25.66%</td>
<td>6.94%</td>
</tr>
<tr>
<td>B's White Eagle</td>
<td>-33.86%</td>
<td>-40.26%</td>
<td>$20,600</td>
<td>17.29%</td>
<td>15.32%</td>
</tr>
<tr>
<td>Casino Club</td>
<td>-20.29%</td>
<td>-6.44%</td>
<td>$30,241</td>
<td>15.58%</td>
<td>3.58%</td>
</tr>
<tr>
<td>Frank's Ranch</td>
<td>-7.88%</td>
<td>-3.89%</td>
<td>$37,317</td>
<td>25.66%</td>
<td>6.94%</td>
</tr>
<tr>
<td>French Casino</td>
<td>-2.21%</td>
<td>+11.45%</td>
<td>$87,625</td>
<td>39.14%</td>
<td>2.39%</td>
</tr>
<tr>
<td>Hamilton's</td>
<td>+44.51%</td>
<td>+68.54%</td>
<td>$71,815</td>
<td>25.69%</td>
<td>12.84%</td>
</tr>
<tr>
<td>Lee Brothers</td>
<td>+2.69%</td>
<td>+7.44%</td>
<td>$60,705</td>
<td>35.57%</td>
<td>10.59%</td>
</tr>
<tr>
<td>Offshore Lounge</td>
<td>-7.88%</td>
<td>-3.89%</td>
<td>$37,317</td>
<td>25.66%</td>
<td>6.94%</td>
</tr>
<tr>
<td>Papa Paul's</td>
<td>-12.61%</td>
<td>-4.11%</td>
<td>$16,849</td>
<td>47.01%</td>
<td>0.17%</td>
</tr>
<tr>
<td>PB Dee's</td>
<td>+9.00%</td>
<td>+16.6%</td>
<td>$52,277</td>
<td>35.43%</td>
<td>12.74%</td>
</tr>
<tr>
<td>Purple Peacock</td>
<td>-13.69%</td>
<td>+0.15%</td>
<td>$45,938</td>
<td>29.49%</td>
<td>2.58%</td>
</tr>
<tr>
<td>Southern Club</td>
<td>-5.79%</td>
<td>-2.09%</td>
<td>$33,125</td>
<td>27.92%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Thibodeaux’s Hall</td>
<td>-22.06%</td>
<td>-18.96%</td>
<td>$21,810</td>
<td>0.09%</td>
<td>5.26%</td>
</tr>
<tr>
<td>Triangle Club</td>
<td>+7.18%</td>
<td>+14.72%</td>
<td>$39,118</td>
<td>24.07%</td>
<td>5.24%</td>
</tr>
</tbody>
</table>
Vacant Dance Halls: Lower Risk

2013

Lee Brothers Dance Hall

Hamilton's Place

St. Martinville

New Iberia

Lafayette

Vacant Dance Hall
Estimated Relative Risk
- Vacant
- Vacant, lower risk

Dance Hall Status
- Unknown
- Active
- Change in Use
- Razed

Louisiana Dance Halls

Author: Emily Ardon Date: December 12, 2013 Sources: On the Map, Center for Louisiana Studies, Manual Collection Projected Coordinate System: NAD 1983 StatePlane Louisiana South FIPS 1702 (US Ft.)
Vacant Dance Halls: Higher Risk

Thibodeaux's Hall, Lake Charles
Bradford's White Eagle, Opelousas

Vacant Dance Hall Estimated Relative Risk
- Vacant
- Vacant, higher risk

Dance Hall Status
- Unknown
- Active
- Change in Use
- Razed

Author: Emily Ardoin | Date: December 12, 2013 | Sources: On the Map: Center for Louisiana Studies, Manual Collection | Projected Coordinate System: NAD 1983 StatePlane Louisiana South FIPS 1702 (US Ft.)
ANALYSIS

Geographic Distribution
The overall geographic distribution of dance halls over time is heavily concentrated in south central Louisiana from Mamou in the northwest to New Iberia in the southeast. This corresponds well with the geographic distribution of extant pre-1968 buildings. There are visible patterns of concentrations along most state and U.S. highways.

The second map clearly shows a higher concentration of dance halls built in heavily populated areas near major cities after 1968. Some of the pre-1968 buildings are also concentrated around Lafayette but are somewhat more loosely scattered along the outskirts of the area. There is a heavy concentration of pre-1968 buildings around Opelousas, much of which closely follows Highway 190 to the west for approximately twenty miles.

External Factors
Correlations are clear, if somewhat weak, with both the median and mean values of most of the five factors. Results are listed as follows:

- Percent Population Change: Population Loss correlated with more razed buildings as expected.
- Percent Change in Housing Units: Housing Unit Loss (or a lower rate of gain) correlated with more razed buildings as expected.
- Median Household Income: Mean and median values show slightly different correlations. The median value for block groups with active dance halls is slightly more than the median value for block groups with all dance halls, indicating a negative correlation between income and dance hall survival. This correlation is reversed in the mean values. The values here are all very close together, further blurring any possibly correlation.
- Percent Ancestry: Interestingly, there are no dance halls located in the census tracts within the highest class of reported Cajun ancestry. The correlation here is somewhat ambiguous, reversing slightly between the mean and median values and with values very close together, similarly to income. This factor is not very informative for my research.
- Percent Tourism Employment: Both the mean and median values show a negative correlation between percent tourism employment and demolition.
Lower Risk Buildings

I was surprised to find that the two buildings with the lowest risk based on external factors are two I’ve previously identified as good candidates for preservation based on their condition and integrity alone. It does make sense that more favorable economic conditions would lead to better-maintained buildings; however, I am interested to test this further.

Hamilton’s Place, Lafayette, Louisiana

Hamilton’s Place is located in Lafayette, Louisiana, which is a large and growing city with a favorable combination of good economic conditions and strong Cajun heritage. Pros and cons from visual observation of the maps and previous research:

- Hamilton’s Place is surrounded by several other active dance halls already in Lafayette, so the market might essentially be saturated.
- It is not located near the densely populated downtown area where nightlife is most prevalent.
- Hamilton’s Place is one of the few historic dance hall buildings located in Lafayette.
- Hamilton’s Place closed in the early 2000s because of slowing business and the owner’s desire to retire.
Lee Brothers Dance Hall, Cut Off, Louisiana

Lee Brothers Dance Hall is located in Cut Off, Louisiana, which is a small town that has seen moderate growth over the last ten years. Pros and cons from visual observation of the maps and previous research:

- Lee Brothers is in a relatively remote location in southeast Louisiana, far removed from major tourist cities but with direct access to New Orleans.
- There is one active dance hall nearby, indicating some possibility of support.
- Lee Brothers closed in 1953 and was used intermittently for various community functions but has mostly sat vacant since then.
- It is a source of community pride and well known in the area, having served as a filming location for a few movies since the 1980s.
Higher Risk Buildings

The two buildings with the highest risk based on external factors are both in relatively poor condition, further supporting the idea that the factors are somehow correlated.

Thibodaux’s Hall, Lake Charles

Thibodaux’s Hall is located next to I-10, a very accessible location but in an area that suffers from little upkeep and use. I do not know when it closed, but it is noted for being unusual in its two-story height. It is one of only two known remaining halls in Lake Charles, which once had a fairly high concentration (see Map 1). Preservation and use of the building could be an economic engine for the neighborhood and surrounding area.
Bradford’s White Eagle, Opelousas

Bradford’s White Eagle is located in a part of Opelousas with a high vacancy rate and poorly maintained buildings. It is not located along a highway, so it is not as easily accessible as the several active historic dance halls in the surrounding area. Additionally, two active historic dance halls in the nearby area are considered iconic, and this hall is not. It would be difficult to compete for tourism business and would most likely attract a neighborhood crowd.

LIMITATIONS

Data availability is one of the most significant limitations for this analysis. My datasets for dance hall buildings included:

- A list of dance hall names and PLACE locations over all time; no construction dates
- A list of names and SPECIFIC locations of all known active dance halls in 1992; no construction dates
- A manually collected list of extant buildings as of 2013 with SPECIFIC locations, construction dates, and other characteristics
- A manually collected list of buildings demolished in the last decade. I added to this by using a combination of site visits and Google Earth to locate all buildings on the 1992 list and determine whether or not each one has been demolished.
For locations and characteristics of individual dance hall buildings, I used a combination of data provided by the Center for Louisiana Studies, several secondary sources, and primary data collection. I created new point shapefiles for Pre-1968, post-1968, and razed buildings using Google Earth. Because of the nature of the data and collection, it incomplete and will continue for some time; therefore, the analysis could be affected by missing data.

Additionally, because of the relatively small number of buildings in the analysis, this data does not lend itself well to statistical analysis calculations. Because of this, I am only able to look for casual trends and correlations and allow these to inform further research.

This analysis does not include building-specific factors or circumstantial factors previously noted in the introduction, including:

- Death of a long-time owner or manager
- Decrease in business
- Natural disasters worsened by wood, often low-quality construction
 - Hurricane damage
 - Flooding
 - Fire

FURTHER RESEARCH

This preliminary GIS analysis has helped me to develop a broad understanding of external factors that might be contributing to demolition of historic dance hall buildings. It also has helped me to define factors for further qualitative research.

As I begin to define building types and subtypes for the National Register Multiple Property Submission, I will be able to use GIS to identify spatial patterns that might help me to further define their historic development.

I would like to look more closely at recent development of tourism, particularly heritage tourism where areas are growing in tourism and have a relatively large percentage reporting Cajun ancestry.

I also would like to look more closely at external factors vs. building-specific factors (such as condition) to determine whether there is a correlation.

DETAILED DATA PROCESSING STEPS

Part 1: Geographic Distribution

1. Develop Base Map
 - Download Louisiana state boundary, U.S. counties, Louisiana water bodies, and Louisiana roads (shapefiles) from Census Tiger/Line. Add all to map, DEFINE and PROJECT.
 - CLIP U.S. counties to Louisiana state boundary.
2. Develop Shapefiles
 - Create a new point shapefile for extant buildings constructed before 1968 by manually creating placemarks in Google Earth and exporting as a KML file.
 - JOIN prepared spreadsheet noting status (vacant, open, or change in use), size, current condition ranking (poor to excellent, based on visual observation), primary genre, frequency of dances (if open), and listing on the University of Louisiana at Lafayette Center for Cultural and Eco-Tourism website (yes or no).
 - Create a new point shapefile for extant buildings constructed after 1968 by manually creating placemarks in Google Earth and exporting as a KML file.
 - JOIN prepared spreadsheet noting size, frequency of dances, genres, listing on the University of Louisiana at Lafayette Center for Cultural and Eco-Tourism website (yes or no), and type (dance hall, restaurant/dance hall, or other).
 - Create a new point shapefile for buildings demolished since 1992 by manually creating placemarks in Google Earth and exporting as a KML file. based on locations noted in *Cajun Dancing* "Appendix A: Dance Halls, Restaurants, and Honky Tonks."

2. Map overall geographic distribution of dance halls (1900 to 2013)
 - Obtain spreadsheet of dance hall names and towns from Center for Louisiana Studies (CLS).
 - In Google Earth, add a placemark in the center of each city, town, or community noted on spreadsheet provided by Center for Louisiana Studies.
 - Export as a KML file.
 - In ArcMap Conversion tools, "KML to Layer"
 - In ArcMap Data Management tools, DEFINE and PROJECT to match map projection.
 - ADD FIELD (type: Short Integer).
 - Manually enter number of dance halls listed for each city, town, or community noted on spreadsheet provided by Center for Louisiana Studies.
 - SYMBOLIZE by quantity, graduated symbols. 19 classes (for 19 separate values), natural breaks.
 - Add legend. Convert legend to graphics. Delete all symbols except 1, 5, 10, 25, and 60 (highest value).

Part 2: External Factors

1. Isolate and combine dance hall types for analysis
 - To isolate razed buildings, SELECT BY ATTRIBUTES (status = "demo"). Export selection as a new shapefile (Demo_all).
 - To isolate active buildings, SELECT BY ATTRIBUTES (status = "open"). Export selection as a new shapefile (Active_all).
 - To combine all buildings, MERGE and export as a new shapefile (DanceHalls_All)

2. Percent Population change 2000 to 2010 by Block Group
 - Download 2010 Tiger/Line census block groups. Add to map.
• Field to be used for join, GEOID, is specified as Type: String and will not work. ADD FIELD to attribute table (Type: Double. Name: GEOID_2). Copy values from GEOID into new field.
• Download percent change population data from Social Explorer, 2010 Decennial Census PL94 Redistricting Data. Delete unnecessary fields and save as MS Excel 97-2003 workbook.
• Add spreadsheet to map.
• JOIN spreadsheet to 2010 block groups using GEOID_2/GEO_FIPS field.
• SYMBOLIZE by Quantity (graduated colors), 5 classes, natural breaks. Field: percent change in population.
• SPATIAL JOIN block groups to DanceHalls_All. View statistics and note median and mean value for percent population change.
• SPATIAL JOIN block groups to Demo_All. View statistics and note median and mean value for percent population change.
• SPATIAL JOIN block groups to Active_All. View statistics and note median and mean value for percent population change.

3. Percent Vacant Housing Unit change 2000 to 2010 by Block Group
• Add 2010 Tiger/Line block groups to map.
• Field to be used for join, GEOID, is specified as Type: String and will not work. ADD FIELD to attribute table (Type: Double. Name: GEOID_2). Copy values from GEOID into new field.
• Download percent change in housing units data from Social Explorer, 2010 Decennial Census PL94 Redistricting Data. Delete unnecessary fields and save as MS Excel 97-2003 workbook.
• Add spreadsheet to map.
• JOIN spreadsheet to 2010 block groups using GEOID_2/GEO_FIPS field.
• SYMBOLIZE by Quantity (graduated colors), 5 classes, natural breaks. Field: percent change in vacant housing units.
• SPATIAL JOIN block groups to DanceHalls_All. View statistics and note median and mean value for percent housing unit change.
• SPATIAL JOIN block groups to Demo_All. View statistics and note median and mean value for percent housing unit change.
• SPATIAL JOIN block groups to Active_All. View statistics and note median and mean value for percent housing unit change.

4. Median Household Income 2011 by Block Group
• Download 2011 Tiger/Line census block groups. Add to map.
• Download median household income information from Social Explorer, ACS 5-year estimates 2007-2011. Delete unnecessary fields and save as MS Excel 97-2003 workbook.
• Field to be used for join, GEOID, is specified as Type: String and will not work. ADD FIELD to attribute table (Type: Double. Name: GEOID_2). Copy values from GEOID into new field.
• Add spreadsheet to map.
• JOIN to 2011 Census tracts using GEOID/GEO_FIPS field.
• SYMBOLIZE by Quantity (graduated colors), 5 classes, natural breaks adjusted as necessary. Field: Median Household Income
• SPATIAL JOIN block groups to DanceHalls_All. View statistics and note median and mean value for median household income.
• SPATIAL JOIN block groups to Demo_All. View statistics and note median and mean value for median household income.
• SPATIAL JOIN block groups to Active_All. View statistics and note median and mean value for median household income.

5. Percent reporting Cajun, Canadian, French, or French Canadian ancestry by census tract
• Download 2011 Tiger/Line census tracts to map.
• Download ancestry information from Social Explorer, ACS 5-year estimates 2007-2011 (including percentages). Delete unnecessary fields and save as MS Excel 97-2003 workbook.
• Field to be used for join, GEOID, is specified as Type: String and will not work. ADD FIELD to attribute table (Type: Double. Name: GEOID_2). Copy values from GEOID into new field.
• Add spreadsheet to map.
• ADD FIELD (Type: Double. Name: SUM_ANC). Populate using Field Calculator (Percent Cajun + Percent Canadian + Percent French Canadian + Percent French).
• JOIN to 2011 Census tracts using GEOID/GEO_FIPS field.
• SYMBOLIZE by Quantity (graduated colors), 5 classes, natural breaks. Field: SUM_ANC
• SPATIAL JOIN block groups to DanceHalls_All. View statistics and note median and mean value for SUM_ANC.
• SPATIAL JOIN block groups to Demo_All. View statistics and note median and mean value for SUM_ANC.
• SPATIAL JOIN block groups to Active_All. View statistics and note median and mean value for SUM_ANC.

6. Percent employed in service industry by census tract
• Add 2011 Tiger/Line census tracts for Louisiana to map.
• Download employment information from “On the Map”: Louisiana, comparison by census tracts, based on place of employment (vs. home), all workers, 2011. Export results to .csv file.
• Delete unnecessary fields and save spreadsheet as MS Excel 97-2003 Workbook.
• Add spreadsheet to map.
• JOIN to 2011 Census tracts using GEOID/id fields.
• ADD FIELD (Title: “Tourism” Type: Double) and populate using Field Calculator (Percent AER + Percent Service).
• SYMBOLIZE by Quantity (graduated colors). Field: Tourism normalized by Total Workers.
• SPATIAL JOIN block groups to DanceHalls_All. View statistics and note median and mean value for Tourism normalized by Total Workers.
• SPATIAL JOIN block groups to Demo_All. View statistics and note median and mean value for Tourism normalized by Total Workers.
• SPATIAL JOIN block groups to Active_All. View statistics and note median and mean value for Tourism normalized by Total Workers.

8. Lower Risk
• Add vacant_all to map.
• ADD FIELD. Begin Editing, and manually populate new field with risk values “high” or “low” from Chart 1.
• SYMBOLIZE by category. Add all values; remove “high” value. Symbolize with green asterisk for low risk and small black square for all other values.
• Label.

8. Higher Risk
• SYMBOLIZE vacant_all by category. Add all values; remove “low” value. Symbolize with green asterisk for low risk and small black square for all other values.
• Label.

REFERENCES

DATA SOURCES

Population Data

Geospatial Data
