the fieldhouse

an investigation into floodplain food production in Austin, Texas
Local food production offers a myriad of community benefits – it creates jobs, strengthens the local economy, improves public health, and reduces transportation impacts. In addition, with 18% of the population in Travis County at risk for food insecurity, local food production can help increase communities access to fresh healthy affordable food. But local food production requires land for farming – and in Central Texas that is becoming an increasingly precious commodity.

Available open space in Austin and the surrounding region is under intense demand to meet housing needs, protect water quality in aquifer recharge zones, provide community parks, and bring new business to the area through commercial development. Over the last 10 years, Travis County has experienced a 25% decrease in farmland. In fact, 9 acres of farmland are lost every day.

To increase local food production, numerous efforts are underway exploring how to preserve farmland that does not simultaneously add to the extreme pressure that exists for limited land resources. In addition, solutions that address scalability need to be advanced, so that farming efforts can actually begin to address the less than 1% of food produced locally with a larger, more continuous supply of food for the community.

Large tracts of land designated as flood plains are available in Austin. These properties flood occasionally and are inappropriate for housing and other commercial development; in fact, rules for using floodplain property strictly limit the types of structures that can be built and the kinds of changes that can be made to the soil. But food production on this land could be a good fit – which makes it more of a design challenge than a regulatory issue. This summer’s Public Interest Design (PID) studio took on the challenge of designing a built environment that would both support sustainable food production and meet the parameters of being located in the flood plain. Working with the Multicultural Refugee Coalition, who wanted access to local gardens to meet strong demand from clients, and Green Gate Farm, who was interested in better utilizing portions of their farm that are located in the floodplain, PID students began to explore the creation of modular, movable structures to support farmers. This unique collaboration of community partners, innovative designers, and City stakeholders resulted in a solution that improves farmers’ potential for success in cultivating food in the flood plain.

According to Nobel Prize winning author Pearl Buck, “Food is a human necessity, like air and water it should be available.” Using thoughtful design to make farming viable on land with significant regulatory parameters increases the ability to provide food to community members who do not have enough. This work goes a long way to supporting a healthy and just local food system. It’s a solution that benefits everyone.

- Edwin Marty, City of Austin’s Food Policy Manager
The 2015 summer program would not have been possible without the support of:

- The City of Austin Office of Sustainability
- The University of Texas at Austin School of Architecture
- The Center for Sustainable Development
- Green Gate Farms
- The Multicultural Refugee Coalition

We thank the following individuals and organizations for their generous contributions:

- Coleman Coker, Instructor
- Kristine Stiphany, Instructor
- Sarah Wu, CSD Project Manager
- Kaethe Selkirk, Teaching Assistant
- Ameritool Manufacturing
- Stanley Studio
public interest design
The Public Interest Design (PID) program bridges disciplines to provide the public with architecture that is created by, instead of just for the public. The program challenges students to consider the social and environmental responsibility of all design decisions. Emphasizing accountability, emerging designers are taught that they are responsible not just to their clients, but to individuals, ecosystems, and entities that their decisions impact. PID engages evidence-based design processes, where the needs and aspirations of community partners are translated into responsible design solutions. Students are encouraged to engage directly with the end-users using methods that emphasize community and individual agency. The program’s iterative design process includes multiple feedback loops to provide framework for responsible practice within the fields of architecture and planning.

The program has been a signature course at The University of Texas at Austin’s School of Architecture since 2011. The program engages diverse challenges within the built environment each year. New community partnerships are formed as the program evolves, providing robust learning experiences for all participants. Summer 2015 marks the program’s fifth anniversary. Within the past five years, the program has partnered with the City of Austin’s Office of Sustainability for three years. Adjunct professor and architect, Coleman Coker, has provided guidance and leadership to the PID program over the past three years. Following Dr. Barbara Brown Wilson and Dr. Steven Moore’s creation of the program, Coker has engaged projects and developed curriculum that continually enriches student education and contributes the on-going discourse of Public Interest Design.

The summer 2015 report highlights the PID program as an educational tool, practice, and community resource. As an open-source documentation of the design/build process, this report aims to illustrate how PID practices can empower members of underserved communities in Austin, Texas to increase agency through design. The summer 2015 Public Interest Design (PID) program engaged a rigorous exploration of the relationship between public service and the built environment. The program challenged students to develop and apply the theoretical and practical skills needed to respond to the ethical issues of engaging the public and its spaces.

The summer curriculum included an Advanced Design/Build Practicum and Community Design Engagement Seminar. These courses worked in tandem to develop a physical system that could support sustainable food production in Austin’s floodplain areas. The Community Design Engagement Seminar, taught by Dr. Kristine Stiphany, took place from June to mid-July. Students learned fundamental community engagement methods, allowing them to effectively communicate and design with project partners. Summer partners included the Multicultural Refugee Coalition (MRC), Green Gate Farms, and the City of Austin Office of Sustainability. The Advanced Design/Build Practicum, taught by Adjunct Professor Coleman Coker, began in June and extended through August. Using insight gained from the engagement seminar, students designed and built a physical system to demonstrate the economic, social, and infrastructural potential of urban floodplain farming in Austin, Texas.

The following report details the summer 2015 PID program. The report is broken into four distinct sections: PLACE, PEOPLE, DESIGN, and BUILD. The first section, PLACE, addresses site parameters and the project’s physical context within the City of Austin. The second section, PEOPLE, describes the social context, primary partners, and the methods of community engagement used by students. The third and fourth sections, DESIGN and BUILD, detail the design’s initial development, iterative improvements, and final construction. A supplementary section, Fieldhouse Design Manual, is included at the end of the report and is intended as an extractable, open-source resource for those interested in developing a similar system to serve their community and farming needs.

The summer curriculum included an Advanced Design/Build Practicum and Community Design Engagement Seminar. These courses worked in tandem to develop a physical system that could support sustainable food production in Austin’s floodplain areas. The Community Design Engagement Seminar, taught by Dr. Kristine Stiphany, took place from June to mid-July. Students learned fundamental community engagement methods, allowing them to effectively communicate and design with project partners. Summer partners included the Multicultural Refugee Coalition (MRC), Green Gate Farms, and the City of Austin Office of Sustainability. The Advanced Design/Build Practicum, taught by Adjunct Professor Coleman Coker, began in June and extended through August. Using insight gained from the engagement seminar, students designed and built a physical system to demonstrate the economic, social, and infrastructural potential of urban floodplain farming in Austin, Texas.

The following report details the summer 2015 PID program. The report is broken into four distinct sections: PLACE, PEOPLE, DESIGN, and BUILD. The first section, PLACE, addresses site parameters and the project’s physical context within the City of Austin. The second section, PEOPLE, describes the social context, primary partners, and the methods of community engagement used by students. The third and fourth sections, DESIGN and BUILD, detail the design’s initial development, iterative improvements, and final construction. A supplementary section, Fieldhouse Design Manual, is included at the end of the report and is intended as an extractable, open-source resource for those interested in developing a similar system to serve their community and farming needs.

The summer curriculum included an Advanced Design/Build Practicum and Community Design Engagement Seminar. These courses worked in tandem to develop a physical system that could support sustainable food production in Austin’s floodplain areas. The Community Design Engagement Seminar, taught by Dr. Kristine Stiphany, took place from June to mid-July. Students learned fundamental community engagement methods, allowing them to effectively communicate and design with project partners. Summer partners included the Multicultural Refugee Coalition (MRC), Green Gate Farms, and the City of Austin Office of Sustainability. The Advanced Design/Build Practicum, taught by Adjunct Professor Coleman Coker, began in June and extended through August. Using insight gained from the engagement seminar, students designed and built a physical system to demonstrate the economic, social, and infrastructural potential of urban floodplain farming in Austin, Texas.
ADVANCED DESIGN/BUILD STUDIO
SUMMER SESSION 1 AND 2

This Public Interest Design Advanced Design Studio focused on developing viable alternatives for urban agriculture in floodplain areas of Austin. Coker offered a robust set of theoretical and practical tools to identify ways in which architects and planners can help create well-designed, resilient, and equitable communities for underserved populations who do not traditionally benefit from professional design services.

The summer’s Advanced Design/Build studio empowered students to become better social-minded designers, teaching them how to apply critical thinking to complex social and ecological problems. Student research provided new urban farming strategies to the City of Austin Office of Sustainability. The built work, intended to demonstrate the potential of floodplain food production, served as a physical demonstration that met the urban farming needs of the MRC and Green Gate Farms. The studio’s goal was twofold: 1) to bring those who benefit from PID work closer to the natural world through poetic design and 2) to develop built responses that improve the resilience and adaptability of communities and natural habitats through urban farming techniques.

COMMUNITY DESIGN ENGAGEMENT
SUMMER SESSION 1

Community Design Engagement, taught by Dr. Kristine Stiphany, examined a variety of community engagement methods for the design and planning process. The purpose of the course was to provide the conceptual, methodological, and practical tools for engaging communities as a foundation for design. The course collaborated closely with Green Gate Farms and the MRC, which included approximately thirty refugees who recently relocated to Austin from other countries. The seminar interviewed, observed, and worked with project partners throughout the first summer session at three different gardening sites in Austin, which allowed for a participatory and human-centered design to take root.

COLEMAN COKER
ADVANCED DESIGN/BUILD STUDIO INSTRUCTOR

Coleman Coker, RA, is principal of buildingstudio and the Ruth Carter Stevenson Regents Chair in the Art of Architecture at the University of Texas at Austin. Coker was awarded the Rome Prize from the American Academy in Rome and is a Loeb Fellow in Advanced Environmental Studies at Harvard University Graduate School of Design. He holds a Master of Fine Arts from the Memphis College of Art and received an honorary Doctor of Fine Arts from there. Coker founded buildingstudio in 1999 after a thirteen-year partnership with Samuel Mockbee as Mockbee/Coker Architects. With the formation of buildingstudio, Coker sought to blur the boundaries between architecture, art, craft and thinking - rather than separate disciplines, each is essential to the larger realm of building. His work has received numerous honors including National AIA Honor awards, Architectural Record “Record House” awards and P/A Design Awards. Coker has lectured extensively at universities and professional forums and has participated in numerous design juries across the country. Coker’s work has been published and exhibited widely both at home and internationally.

KRISTINE STIPHANY
COMMUNITY DESIGN ENGAGEMENT INSTRUCTOR

Dr. Kristine Stiphany is a National Science Foundation postdoctoral fellow at The University of Texas at Austin. She has a Bachelor of Fine Arts from the University of Michigan and a Master of Architecture from The University of Texas at Austin. Her work explores the intersection between sociospatial analysis, ethnographic methods, and design.

KAETH SELKIRK
TEACHING ASSISTANT

INSTRUCTOR BIOGRAPHIES
Finding a site in Austin’s floodplain was vital to the development of a system that could expand possibilities for food production in flood prone areas. The City of Austin is divided by the Balcones Escarpment, a fault line that distinguishes rocky, steep, and dry scrublands in west Austin from flat, fertile bottomlands to the east. Water flows differently on the east and west sides of Austin due to these dissimilar land conditions. While all water ultimately drains into the Lower Colorado River, Austin’s unique position on the Balcones Escarpment makes it particularly flood prone. Dam systems have been created to manage precipitation and flow levels throughout the city, yet man-made and natural water systems are limited in the amount of water they can process during storm events. Flooding occurs when the water systems are overwhelmed. In heavy storm events, the Lower Colorado and adjoining creeks overflow on to land that is usually dry. Rapid development has worsened the city’s flooding issues. Impermeable roads, sidewalks, and parking lots cannot absorb flood or rain water; paving increases the rate and volume of storm water moving throughout the city.

In order to minimize the impact of flooding on both human and ecological health, the City of Austin’s Watershed Protection Department manages the urban creeks and water drainage systems. Guided by the Watershed Protection Master Plan, the department operates multiple programs to sustainably manage erosion, flooding, and water quality. Land conservation is a low-impact solution engaged in flood prone areas. The city prohibits development within designated floodplains to minimize human hazards and ensure that the natural environment can absorb, slow, and filter incoming water.

The opportunity to increase local food production lies in the potential to utilize floodplain property when storm conditions are absent. Community gardens across the United States have seized this opportunity, working with city leadership to develop urban farming practices in their floodplain’s nutrient-rich soil. The City of Austin recognized this potential and challenged the summer 2015 PID program to develop a floodplain-framing case study and demonstration project in the city.
Demonstrating the feasibility of urban farming in the floodplain required obtaining property already dedicated to sustainable food production. Austin is one of the fastest growing cities in the nation and is working to increase its local farming capacity. However, one of the largest barriers to local production is garnering property that does not conflict with or negatively impact Austin’s housing market. Floodplain food production offers a land-based opportunity to mediate Austin’s food and housing needs. While development cannot occur in the floodplain due to human health and safety concerns, Austin permits urban farming under the Urban Farm Ordinance.

The City of Austin views floodplain farming as an opportunity to increase the health and livelihood of its residents. Providing students with a site that coupled active farming operations with available floodplain land was key to the development of a successful case study and demonstration project.

Utilizing Austin’s floodplains for urban farming can expand local food production, generating greater access to nutritious food and helping to eliminate food deserts within the city. The opposite page depicts primary community gardens and urban farms within the City of Austin. Several neighborhoods lack access to fresh food and community gardens, such as the Rundberg neighborhood and areas east of I-35.
Green Gate Farms was selected as the design/build site for three primary reasons. First, the Green Gate River Farm in Bastrop, Texas, included land in the Colorado River floodplain. Second, the farm was actively involved in and contributed to Austin’s sustainable food movement. Third, the farm had a pre-established and successful farming program that served the MRC, a primary project partner.

Green Gate Farms includes two properties, an Urban Farm in east Austin, Texas and a River Farm in Bastrop, Texas. The River Farm contains productive land along its perimeter, but lacks the necessary infrastructure to support daytime workers in flood prone areas. Designing for Green Gate Farms presented the students with the unique challenge of building infrastructure that could expand the farm’s physical and social capacity. The work would then serve as a case study for floodplain food production in the City of Austin. Green Gate Farm owners, Skip Connett and Erin Flynn, were involved in the design processes. They also donated construction materials, such as a trailer bed and decomposing toilet, which served their infrastructural needs as well as those of the City of Austin and MRC community.
The PID 2015 program partnered with three primary organizations: The Multicultural Refugee Coalition (MRC), Green Gate Farms, and The City of Austin Office of Sustainability. The MRC is a community group based in Austin that acts as an employment and social support system for recently relocated refugees. Green Gate Farms, a certified organic farm, serves as a community resource for people of all incomes throughout Austin. They work to connect people to agriculture through educational programming, community supported agriculture, volunteer programs, and work-shares. Green Gate Farms and the MRC have a long-standing partnership providing refugees with farming opportunities. The City of Austin Office of Sustainability works to create a thriving, equitable, and ecologically resilient Austin community. Maintaining a healthy, local food system is a fundamental component of this work. The city actively supports the growing, selling, eating, and recovering of food locally.

Students used diverse community engagement methods across partner organizations, including participant observation, mental mapping, and interviews, to understand the needs and desires of each community. Interactions were designed to help determine how community partners perceived and practiced urban farming in Austin, Texas.

Participating Observation: Students worked with and quietly observed MRC community members and Green Gate Farm workers. This passive form of research facilitated mutual respect and trust. It was also critical in helping students understand the relevance of urban farming within partner organizations. In the later stages, the students expanded their relationships by farming alongside refugees and Green Gate workers. Building trust was vital in evolving the design conversation from one that was distant to one that was personal. As a result, students and community members felt empowered in their work towards a common goal.
Cognitive Mapping: To develop an understanding of the design build site at Green Gate Farms, students mapped their first experience at Green Gate Farm’s River Farm. Students developed their own interpretations of the farm, illustrating how they saw users experience and engage their surroundings. The class discussed each student’s work and identified commonalities to help guide design decisions.

An example of cognitive mapping is shown to the right. The following page shows an example of mental mapping. Laney Gorman, a Bachelor’s of Architecture student in her fifth year, produced a cognitive map, described below and shown on the right.

“After our field trip to the Green Gate River Farm, we were asked to document our experience using various types of media. My approach in the first map was to document the path we took through the farm and use the pictures that I took along the way to express how each experience was related to the senses: touch, taste, sound, sight, and hearing. Larger, more opaque images represent moments that were more sensory-intense. My map documents how long I spent at certain locations on the farm and the aerial map is included for the viewer to see the overall layout of the farm.”

Interviews: By interviewing participants about their lives and gardening practices, students gained a deeper understanding of participant experience. MRC interviews included questions about what the participants grow and how often they visit their garden. Students also asked about what a typical day in Austin was like. Questions were focused on understanding transportation patterns, work, life, and community experience. To understand their gardening methods, students asked how the refugees gardened in their home countries and what they missed the most. The biggest challenge to these interviews was the language barrier, which was overcome with translators, who were accessed through and provided by the MRC program.

Students also interviewed Green Gate Farms’ owners and employees. This provided insight on how the farm interacts with members of MRC in addition to the physical farming needs on their property. Direct interviews with the City of Austin did not occur. Rather, Edwin Marty, the City’s Food Policy Manager, gave formal and informal presentations to the students with ample time for questions and answers and conversation.
The engagement seminar developed an actor network map to help delineate actor priorities and guide design decisions. Completing this task enabled the students to synthesize each partner’s position and aspirations within the design process. Summaries are included below:

Green Gate Farms wanted a sturdy, mobile structure that could be moved to increase usable agricultural land. They discussed the ability for this structure to serve the MRC’s need for extra gardening space by placing the structure on the floodplain portion of the property, which appeased the City of Austin’s wishes to explore the possibility for productive urban farming in those areas. The owners of the farm emphasized their goal to reuse all the materials. They offered a trailer bed that was critical in providing stability and mobility to a structure that could successfully operate in the floodplain.

The City of Austin Office of Sustainability sought a solution that could utilize the protected watersheds without damaging them, while providing more fresh food to the city’s residents by empowering local gardeners. The studio determined that these needs could be met with a mobile design—something easily moved to and from the floodplain in the event of flooding, while providing local food production infrastructure. Keeping available resources in mind, the class determined that a structure on Green Gate Farm’s trailer bed could serve the city’s needs. It provided stability, mobility, and enough flexibility in build out so that it could be tailored to the diverse needs of Austin’s farming community.

The MRC wanted a solution that would help them in the gardening process. They hoped for increased garden space, shade and seating for work breaks, storage space, and a tolety area. The class determined that their needs could be met with a structure that incorporated dynamic seating and resting arrangements, a table or/and counter space, storage and tolety areas, and an enclosure system that could double as shade. Students discussed the importance of these needs as they organized and reorganized possible frameworks for the structure’s interior and exterior.

ACTOR NETWORK MAP

SYNTHESIZING PARTNER DESIGNIntentions
Student’s considered user experience and function throughout the design process. They discussed whether the space should be open or closed, private or public, for gathering or individual action, and the degree to which its organization should be pre-set.

The studio developed a series of possible solutions with the city and community partners. The final iteration included a mobile unit that could integrate tool and water storage, shelter and shade, accessible work and rest space, toiletry, and cost-effective construction. The diagram below shows the system’s primary elements—toiletry, storage, a kitchenette, seating, and a versatile resting area—and the way in which they are organized within the 20’x7’ trailer bed.

Three important design features are highlighted below. Each feature is critical to the design because of the functional role it plays. A compostable toilet was installed in the private bathroom area. This toilet does not require plumbing aside from a ventilation pipe that filters air vertically through the ceiling. The toilet does not produce significant odor and is relatively low-maintenance. The inclusion of a toilet allows workers to increase the amount of time they can spend farming in remote areas.

The class built a reusable water system, featuring a fifty-five-gallon water cistern, which fills from the sloped roof and gutter into a gravity-fed hose. This hose feeds a stainless-steel sink and has a nozzle for washing boots and farm tools. The sink area contains enough counter and storage space for lunchtime food preparation. Additionally, the class installed two sets of manually-folding RV steps to provide easy access to the floor-level of the structure. One set of steps provides bathroom access. The other set provides access to the main cabin.

Students designed for adaptability, ensuring that anyone interested in urban or rural agriculture could develop a system of their own. They entitled their build work, The Fieldhouse. An open-source Fieldhouse Design Manual is featured at the end of this report.
To make construction efficient, The Fieldhouse was divided into smaller modules that could be built separately and then combined to create the overall structure. This allowed for flexibility in time, budget, and space. Sixteen students were divided into smaller teams by interest and skillset. Each team focused on a different aspect of the construction. Three teams were created, Frame, Fill, and Flip, each responsible for budgeting, material selection, design detailing, engineering, and construction.

The frame was built first to provide structure for interior and exterior features. Organizational components, such as the toiletry and sink areas, seating, and storage space were built in tandem and installed after the frame was complete. The structure was then clad with shading, privacy, and entry devices. The following section details the construction process of each team.
The Frame Team was responsible for the trailer's structural aspects, including the wood deck, steel frame, and roof system. The steel frame was fabricated by a professional welder and assembled by students. The floor system was made similarly to a wooden deck, with specialized joints to ensure structural integrity and a comfortable floor height. The steel frame system was bolted to the wooden deck and welded to create final connections. The roof system was installed last. It was built with tongue-and-groove panels and plywood boards, sloped wooden joists to control water flow, a radiant barrier to deflect heat, a waterproof roofing membrane, flashing, and a gutter.
The Fill Team was responsible for providing the interior infrastructure. This included bench seating, countertops, individual and group storage, toiletry, and the sink system. The team determined the shape and size of each component and chose to clad each module in cedar wood, which ages well in Texas’ dry climate. The cedar cladding system was an essential component of The Fieldhouse’s finished appearance. The interior cabinets accommodate a standard farm-crate (11”x11”x13”), allowing farmers to store individual belongings during the workday or overnight. A simple, sturdy, lumber-frame cubby system was developed.

The bench spans the trailer’s bathroom and cubby systems. It is clad in 2”x4” framing lumber on the interior and 2”x4” cedar boards on the exterior and is framed to allow for additional storage underneath. The design team decided to maximize storage space by installing the bench with externally accessible cubbies on its underside and exterior.
The Flip Team addressed the structure’s enclosure and entry points. The design process balanced practical issues of security, shading, rain protection, and structural stability with aesthetic opportunities for play of light, subtle transparency, and material expression. Panels served as the exterior façade of the unit when closed, and doubled the unit’s capacity for shade when opened vertically. The team structured the panels using cross-braced steel frames and threaded, steel rods. The nine four-foot-wide panels were sheathed in perforated metal for both shade and light visibility, and in clear Polygal plastic for rain protection.

The panel system provides necessary shading, but proved inconvenient for entry and exit when the unit was closed. To solve this problem, one section opens on hinges to serve as a door when the unit is closed. When raised, the panels and door rest on steel angles inset into the structure’s frame. Concern that panel weight would inhibit easy operation was resolved by installing four gas-powered springs, similar to those on hatchback car trunks.
The Fieldhouse is located on Green Gate Farms’ River Farm, where it provides infrastructure for MRC farming activities and a means to expand floodplain food production. The Fieldhouse will continually support the work of community farmers, creating an increasingly efficient system for urban agricultural production and a tool for expanding the agency and ability of community farmers.
Collaboration and perfect timing converged this summer to overcome the challenges of connecting surplus city land and beginning farmers, especially among the region’s growing refugee population. For the past two years, Farm Link and Green Gate Farms have brought together up to a half-dozen refugees who spend one day a week at the certified organic vegetable farm. They help out in the fields in return for food and the opportunity to learn how to grow produce in Central Texas. In addition to language and transportation hurdles, the refugees have had no convenient gathering place on the farm where they can access shade, store belongings and tools, wash hands and use bathroom facilities. Putting all these needs under one roof and making it a movable as well was a new challenge.

Even established sustainable farms share fundamental challenges when it comes to working conditions. New farmers, in particular, tend to rank their personal needs last, sacrificing basic comforts while they invest their time and money in making the farm succeed. As a community-based organic farm, Green Gate Farms is all too familiar with doing without. The farms’ founders have cobbled together a farmstand, outhouse and shaded areas by repurposing materials—pallets, scrap tin, and leftover banners from South-By-Southwest events. The UT students not only came up with the design but built it from the ground up. Working on site at Green Gate added a new element to this semester’s project. They arrived at the farm early and quit late. They worked in the summer heat and grew callouses on their hands dirty. Just like farmers.
The following manual includes three design variations of The Fieldhouse. Budget and construction considerations are uniform across schemes. Occupancy levels vary. The three design schemes: A, B, and C, are shown from least occupied to most occupied and demonstrate a variety of organizations and uses. The summer 2015 PID design is scheme B: Urban Farming. This level of occupancy is highly versatile, as there is no designated sleeping or kitchenette area. Rather, there are several flexible spaces that support a variety of daily needs.

X = AMOUNT OF SPACE DEDICATED TO EACH ELEMENT WITHIN THE SCHEME

<table>
<thead>
<tr>
<th>DESIGN ELEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme A: Community Gardening</td>
</tr>
<tr>
<td>Scheme B: Urban Farming</td>
</tr>
<tr>
<td>Scheme C: Rural Farming</td>
</tr>
</tbody>
</table>

SCHEME A: COMMUNITY GARDENING

COMPONENT KEY

1. OPERABLE AWNING
 - Shade to create an area to provide area for gathering and relief from the sun. When open, swing out and when closed, one section acts as a swing door to allow for individual access.

2. LARGE TOOL STORAGE
 - Large tools are able to be kept at the garden rather than having individuals bring them each day. Accessible from the interior to ensure items are properly checked out and accounted for.

3. SMALL TOOL + MISCELLANEOUS STORAGE
 - Small tools and miscellaneous gardening equipment are able to be kept at the garden rather than having individuals bring them each day. Accessible from the interior to ensure items are properly checked out and accounted for.

4. TOOL CHECK-OUT DESK
 - Area where tools and other miscellaneous gardening equipment can be checked out and returned each day.

5. COMPOSTABLE TOILET
 - Accessible from the exterior and away from the communal gathering area to provide for privacy and separation. Fumes are vented through a vertical vent pipe.

6. RINSE STATION + RAIN WATER COLLECTION & STORAGE ABOVE
 - The gutter system funnels water from the roof to a water cistern located directly above the rinse station where it is then accessible from ground level to facilitate easy access.

The manual is designed to provide a group of community gardeners with the essential components needed to maintain shared and personal garden plots.
OPERABLE AWNING
Shades both inside and out to provide area for gathering and relief from the sun. When closed, one panel acts as a swing door to allow for individual access.

TOOL STORAGE
Accessible from the exterior to allow for ease of access.

PERSONAL STORAGE
Small and large interior compartments give urban farmers a safe place to stow their personal belongings while out working the farm.

BENCH + STORAGE
Provides added storage as well as a place to sit and rest.

COMPOSTABLE TOILET
Accessible from the interior to offer ease of access when the farmer is spending the night.

SINK + RAIN WATER COLLECTION & STORAGE ABOVE
The gutter system funnels water from the roof into a water cistern located directly above the sink where it is then accessible from ground level to facilitate easy access.

COUNTER
Multi-use surface with open storage below.

SCHEME B: URBAN FARMING

SCHEME C: RURAL FARMING

COMPONENT KEY
1. OPERABLE AWNING
2. TOOL STORAGE
3. PERSONAL STORAGE
4. BENCH + STORAGE
5. COMPOSTABLE TOILET
6. SINK
7. RAIN WATER COLLECTION & STORAGE ABOVE
8. COUNTER

Designed to provide an individual or group of people with the essential components needed to live and work on a rural farm.