Alex Dallas is an architectural designer from Austin, Texas.

He recently received his Bachelor of Architecture from The University of Texas at Austin. While attending, Alex served as an undergraduate research assistant, designing and fabricating installations for The University of Texas Energy Institute and the Fusebox Festival in Austin, TX. He has also attended the Ecole Nationale Superieure d’Architecture in Paris, and traveled throughout Europe, New Zealand, and the state of Tamil Nadu in India.

Alex has most recently completed a residency program working at Allied Works Architecture in Portland, Oregon. He has also worked for Kelly Grossman Architects and Murray Legge Architecture in Austin, TX.

In his work, Alex is profoundly interested in the power of architecture in its ability to reveal relationships that are present but might otherwise remain unseen. The following works embody his architectural interests and speculations.
The Vertical Monastery serves as a new urban monastic prototype, transforming the traditional rustic and horizontal type of monastery into a new form characterized by an urban location and formal and organizational verticality. Sited on a unique stretch of the Mississippi River bluffs, the monastery design was profoundly motivated by the search for an architecture of use and beauty—deeply rooted to its place, constructed within a material culture, with an emotive atmosphere, and with poetic qualities that affect us deeply. The design of the new monastic monastery is based on community engagement and outreach in place of traditional monasticism’s desire for seclusion. This informed the spatial experiences throughout the monastery in relation to spatial edge, structural order, sequence, enclosure, lighting, and tactile engagements, with the religious space’s sculptural stereotomic forms and the community and cell space’s rationalized tectonic expression.
Today, one in six people call India home. Of those, one in six are Dalits—about 220 million people (two-thirds of USA’s population). Centuries old barriers separate Dalits (formerly “Untouchables”) from their neighbors. And while the caste system was officially outlawed in 1995, most Dalits are still discriminated against, particularly in rural areas where half of India’s population lives.

This studio was asked to design a K-12 school for a Dalit community. The project aimed to study and question the extent to which buildings can impact people’s lives. The school was designed with local culture and environment in mind. The school’s curriculum will teach a place-based approach meant to raise bioregional awareness and entrepreneurship. Largely off the grid, the school will need to use solar energy, water catchment, and gray water reuse. An edible permaculture landscape, composting, and passive bio-climactic design strategies further help promote independence and resilience. As the design’s poetic foundation, a regenerative design philosophy is embedded throughout, not just in the campus design, but in the school’s learning programs where Dalit students grow their own food and are also taught sustainable practices for their daily lives.
1-5 Years: Mediate the soil, add ground cover, and grade the site

5-10 Years: Build the framework of the site

10-15 Years: Grown

15-25 Years: Establishment

Landscape Phasing Plan

Classroom Garden

Water Catchment and Distribution System
In the final month of the semester, our studio designed and constructed a full scale mock-up of the outdoor classroom space of the Bodhidharma School in India. The mock-up doubles as a shade pavilion for the St. David’s Community Garden in East Austin. Our goals were to test the scale of the space, the effectiveness of the bamboo as a durable shade material, and its poetic potential.

We also wanted to explore alternative construction methods and materials that were more sustainable and accessible in the Austin area. We used steel, in lieu of concrete, and glass bottles, in place of recycled plastic bottles, and compressed earth block.
Caret 6 is an architectural installation designed to exhibit the finalists and winners of the TEX-FAB SKIN competition. The exhibition supports graphic displays and prototype models, while standing on its own as an architecturally significant project. The structure consists of an inhabitable catenary vaulted space and an articulated ground surface that emerges from the vault to support the competition finalists. Using digital tools (Rhinoceros, Grasshopper, and Kangaroo), Caret 6 is designed parametrically to generate unique formal qualities and fit the programmatic requirements for the exhibit, while allowing for the mass customization of hundreds of unique pieces and connections, which are cut on a CNC router.

The form is a result of the study of the modularity of diamonds and their ability to aggregate within complex geometries. The diamond modules are deconstructed into two primary elements: ribs and infill surfaces. The ribs serve as the structure that support the infill surfaces, which are hinged to emphasize the pattern. The ribs are discontinuous as a result of the irregular grid that the modules aggregate within. These discontinuities necessitated collaboration with students and professors from the UT Cockrell School of Engineering to ensure the structural integrity of the installation.
Infill Surfaces
Tertiary Ribs
Secondary Ribs
Primary Ribs
Construction Phasing Axonometric
Vault & Ground Surface Lighting
TEX FAB Exhibit Installation
The Refuge serves as a filter between Waller Creek and Red River, offering visitors alternative perspectives and experiences related to the activities of roller-skating and bowling. The organization of the programs comes from the concept of the glimpse, which draws the visitor through the site by providing intentional and intriguing views of the bowler and skater. The visual and auditory presence of the pinsetters activate the bar as one directly enters from Red River, and then the glimpses of bowlers pull them through until they reach the tranquility of the skating rink by Waller Creek. The Refuge also serves as a critical connector to the Waller Creek Master Plan redevelopment by Van Valkenburgh Associates, providing access to and across the creek.

This transition marks the important role that the architecture plays in creating harmony between the busy urban life of Red River and the serenity of Waller Creek. The relationship between the areas of movement and the areas of pause/glimpse create a complex visual dialogue between the perception of who is the viewer and who is the subject.
North-South Detail Section

1. Cast in place concrete shear wall
2. Thermal insulation
3. Vapor barrier
4. Air cavity
5. Steel Tie
6. Steel box beam with louver tracks
7. Aluminum louvers fixed to wide flange steel beam
8. Toughened glass
9. Aluminum hangars
10. Light diffusion fabric
11. Aluminum support
12. Stone cladding panels (exterior)
13. Stone cladding panels (interior)
14. Round steel air duct
15. Sedum
16. Cast in place concrete on reinforced galvanised steel decking
17. Cast in place concrete foundation
18. Stone cladding
19. Suspended wood ceiling
20. Steel framing channel
21. Cold rolled runner channel
22. Suspension cable
23. Wide flange steel beam
24. Steel gutter
South Elevation & East-West Section
Ohio Veterans Memorial & Museum
50

1320 SW Broadway
58

Case Work
64
The Ohio Veterans Memorial and Museum houses exhibitions and artifacts that serve as a testimonial to the state’s 250-year history of military service. Located along the Scioto River in downtown Columbus, the building and grounds will also serve as the focal point for diverse commemorative and civic events.

The Memorial Museum is conceived as an architecture of two acts. The first is an act of landscape, in which the surrounding parkland is cut, carved, and lifted into the sky. This creates a path to the Sanctuary—a civic room that will be a place of ceremony, celebration, and reflection. The second is an act of structure, in which a series of concentric arches rise from the earth to hold the Sanctuary above. These bands of interwoven concrete hold and protect the museum, creating space for exhibitions that illuminate ideas of service and remembrance.

My primary contribution to this project was my assistance in the Rhino computer model of the building and the surrounding landscape. Although I came into the project toward the end of construction documentation, my reconstruction of the computer model provided the necessary information for CD updates and the creation of new documents for coordination with engineers, the landscape architects, and the exhibit designers. I assisted in 2D documentation as well, through renderings and extracting information from the model. These drawings were used in an extensive 3 month value engineering and partial redesign process.
The design for the 1320 SW Broadway building is transforming the former headquarters of the Oregonian Newspaper into a mixed-use commercial space in the heart of downtown Portland. Initially built in 1948 by renowned modernist architect Pietro Belluschi, the building provides a rich historic formwork for the extensive renovations needed to preserve the building. While exterior alterations will restore the building’s street life, it is in the interior that modernist spaces of Belluschi will be uncovered and complemented with contemporary design.

First opened at a time when people often dropped by their local newspaper’s offices to place a classified ad or pay for their subscription, the building greeted visitors with a grand 28-foot high lobby. Over time, the lobby and other areas were reduced in size and converted for traditional office use. The design by Allied Works clears out the previous renovations, filling it with light and space, highlighting the old and combining it with the new.

With my primary focus on finalizing the design of the lobby, I was put in charge of the digital modeling and rendering. This involvement in the design development and construction documentation of the lobby allowed me freedom to make design decisions that would be carried into the final design. With the lobby also becoming a home to Ristretto Roasters, a cafe design also had to be incorporated. The lobby’s final design uses simple formal moves reminiscent of the building’s modernist history in combination with a contemporary material selection.
Case Work offers an inside view into Allied Works Architecture’s unique approach to design, a process driven by a rich material and physical investigation. For Brad Cloepfil and Allied Works, each project begins with the creation of hand drawings and concept models.

The exhibition presents a series of custom-built cases, which open up to reveal a collection of artifacts inside, including models, drawings, material samples, and other studies that have provided conceptual inspiration. Curated by Dean Sobel, Director of the Clyfford Still Museum, the exhibition places the firm’s work in context, and explores how this singular collection of artifacts reveals the process of creation in architecture—the act of translating ideas into built form.

My primary contribution to this project was my assistance in the construction of the full scale mock-up of the entire exhibition and the design of the exhibition’s finishes. I first came onto the project helping in the shop with the construction of the cases, but transitioned into working on the frames and the transport/construction of the exhibition. The final construction also consisted of designing the model security system to prevent model theft. Once built at a nearby warehouse, the entire exhibit was conditioned by the museum curator and packed up/shipped for its first opening at the Denver Art Museum in Mid January.
This acoustical wall system was designed and fabricated for a collaborative space in The Energy Institute at The University of Texas at Austin. The project integrates traditional concerns such as acoustics, indoor air quality, and program with other more ephemeral considerations such as atmosphere, ornamentation, and aesthetics. Wood veneer and wool felt were selected to maximize visual effect and acoustical performance while minimizing material impact.

Working with our team of acoustical engineering researchers and students from the Cockrell School of Engineering, it was determined that, to maximize the diffusion of sound, it is important to have a variety of convex and concave surfaces. The two main elements of the system are the concave tracks and the convex modules inserted into the tracks. Though both are fabricated from wood veneer, they leverage the material qualities of the veneer in very different ways.

Layers of textural richness are present in the natural variation of the wood grain and wool fibers, as well as a patterned perforation layer subtracted from the wood veneer modules. The perforations create a secondary level of acoustical performance, covering the surfaces in an abstracted wood grain pattern.
When unlocking a bike from a public rack after dark, a person needs at least two things in terms of lighting: general illumination and sufficient task lighting. Spoke aims to achieve both of these lighting qualities in order to provide the perfect illumination for the task at hand by its unique shape as well as its receptiveness to its surroundings. By using daylight sensors and motion sensors, Spoke is able to be an efficient and responsive luminaire.
GRAPHIC SPECULATIONS
VISUAL COMMUNICATIONS & STUDY ABROAD

Deconstructing La Tourette

Reconstructing La Tourette
EDUCATION
University of Texas at Austin
Bachelor of Architecture .. May 2016
Honors: Cum Laude (GPA: 3.85)
Ecole Nationale Superieure d'Architecture de Paris-Belleville
Architecture Study Abroad .. Fall 2014

EXPERIENCE
Allied Works Architecture
Architectural Intern | Portland, OR June-December 2015
As part of a six month residency, worked on the design development and construction documentation of a museum, and a home, the schematic design of a creative office, and the final design and construction of an exhibition. Production included physical and digital models, renderings, construction documentation, and full scale mock-up construction.

Murray Legge Architecture
Architectural Intern | Austin, TX May-August 2014
Produced digital/physical models, and construction documents for a shade pavilion in downtown Dallas. Worked on fabrication files and helped coordinate with a sheet steel fabricator.

Kelly Grossman Architects
Architectural Intern | Austin, TX May-August 2012 & 2013
Contributed to the design and construction documentation of several apartment projects in the San Marcos and Austin area.

Teach Design
Student Designer | Austin, TX September 2009-February 2012
Led the student team in collaboration with Frog Design, SHW Group, and Flintco in the design and construction of two interactive outdoor seating structures for McCallum High School in Austin.

RESEARCH
University of Texas at Austin
Research Assistant | Igor Siddiqui January -April 2016
Explored the phenomena inherent to red green blue (RGB) color and cyan magenta yellow (CMY) shadows. Assisted in the research, design, and final construction of an immersive ceiling installation that transformed the 2016 Fusebox Festival Hub.

University of Texas at Austin
Research Assistant | Odom & Glass February 2014-June 2015
Developed an acoustic panel system for UT Austin's Energy Institute. Contributed to the project from beginning schematic design through installation, including 3D modeling, prototyping, fabrication and coordination with acoustical engineers. Laminated and vacuum-molded laser cut wood components on CNC routed formwork.

RECOGNITION
Design Excellence Nomination ... May 2013 & May 2015
School of Architecture Mebane Scholarship July 2014
Lance Tatum Endowed Scholarship .. July 2014
Design 6 Sound Building Distinction May 2014
Collaboratory Surface
Caret & Publications

Bubbles Publication
Austin Business Journal (May 2011), Good Magazine (March 2010)

COMPETITIONS
University of Texas at Austin | 1st place ... January 2015
Coupling Design Competition
University of Texas at Austin | 1st place March 2013
ACME Brick Wall Competition
Cohen New Works Festival | Commissioned February 2013
Perceiving Campus & Light Instruments

IN INVOLVEMENT
Texas Society of Architects ... 2011-Present
American Institute of Architecture Students 2011-2016
Public Outreach Chair & Beaux Arts Ball Committee Chair
Alpha Lambda Delta & Phi Eta Sigma Honor Societies 2012-2016
Tau Sigma Delta Honor Society in Architecture 2013-2016

SKILLS
Proficient
Rhino | AutoCAD | Illustrator | Photoshop | InDesign | SketchUp | Maxwell | Laser Cutting | Model Making | CNC Routing | CNC | Knife | 3D Printing | Drafting | Sketching

Familiar
Revit | Grasshopper | Kangaroo | 3DS Max | GIS | VRay | Vectorworks | Photography | Wood Working

References Available Upon Request