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Abstract:When confronted with unforeseen challenges, practicing informed decision making is crucial for enhancing resilience in the built
environment. While scan-to-building information modeling (BIM) is a well-established approach for creating detailed digital representations
of physical assets, its application in assessing and improving infrastructure resilience remains underexplored. This study addresses this gap by
proposing a novel application of scan-to-BIM, namely, scan-to-BIM-to-digital twin (S-BIM-DT) workflow. By integrating reality capture and
digital twin technologies, this workflow creates continuously updated and accurate digital representations of physical assets, enabling the
generation of various scenarios. Unlike traditional methods, the S-BIM-DT workflow facilitates continuous model refinement, supporting
informed resilience strategies. By combining these technologies into a cohesive process, the workflow facilitates decision making under
uncertainty, enabling stakeholders to evaluate and respond to various scenarios effectively. We demonstrate the implementation of the
S-BIM-DT workflow through two use cases that highlight its capability to enhance resilience at different scales. The first use case involves
the Combined Transportation, Emergency, and Communications Center (CTECC) in Austin, Texas. BIM-enriched computational fluid dy-
namics (CFD) modeling simulates airflow and develops alternative scenarios for optimizing the heating, ventilation, and air conditioning
(HVAC) systems. This approach enhances resilience against airborne health threats in a postCOVID context. The second use case focuses on
designated areas within Beaumont, Texas, as part of the Southeast Texas Urban Integrated Field Laboratory (SETx-UIFL) research. By
developing inundation maps to assess extreme weather events, this modeling aids in preparedness efforts and informs the development
of climate-resilient infrastructure in vulnerable neighborhoods. Results indicate that the S-BIM-DTworkflow effectively generates scenarios
that enhance resilience in the built environment by facilitating informed decision making. This study serves as a bridge between advanced
scan-to-BIM methodologies and the practical strategies needed to improve built infrastructure resilience. DOI: 10.1061/JCCEE5.CPENG-
6253. © 2025 American Society of Civil Engineers.
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Introduction

Although an increasing number of infrastructures are being built
every day to meet evolving societal needs (Hargaden et al. 2019),
the vulnerability of built infrastructure to a spectrum of challenges,
such as natural hazards and unforeseen disruptions, has never been
more apparent (Ogie et al. 2018). Texas, for example, has endured a
series of severe droughts and intense flooding events over the years
as a result of the state’s susceptibility to climate variability (Merem
et al. 2021; Stott et al. 2016), as well as significant impacts from
the COVID-19 pandemic, which is an unforeseen global health
challenge that occurred in the past few years (Clark-Ginsberg et al.
2021). These events expose a critical vulnerability: existing meth-
ods for infrastructure management are often unable to effectively
anticipate or mitigate unforeseen challenges, increasing concerns
about the resilience of built infrastructure (Shakou et al. 2019;
Lee et al. 2023). An instance of this internal limitation is the lack
of as-built and as-is information (Wang and Yin 2022). This grow-
ing awareness highlights the urgent need for innovative approaches
that address the resilience of built environments to face evolving
regional and global threats.

Scan-to-building information modeling (BIM), an active re-
search area, has emerged as a promising tool in the construction
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industry, offering precise measurements and comprehensive virtual
representations of the built environment (Castañeda et al. 2021).
The rise of digitalization and Industry 4.0 has further enabled
the adoption of these technological innovations, enhancing the in-
dustry’s capacity to respond to unforeseen challenges (Chen et al.
2022; Elghaish et al. 2022; Liu et al. 2022; Maqbool et al. 2023). A
key innovation, the digital twin, integrates real-time data with vir-
tual representations of physical assets, offering substantial potential
benefits and gaining prominence (Bousdekis et al. 2021). However,
despite these advancements, current practices typically deploy
these technologies independently, limiting their potential to gener-
ate scenarios essential for informed decision making under uncer-
tainty. This disconnect presents a critical research gap: the lack of
integrated workflows combining scan-to-BIM and digital twin
technologies to support scenario generation for infrastructure resil-
ience. Previous studies, such as Banfi et al. (2022), have begun in-
tegrating these technologies for building management, focusing on
aspects like thermal transmittance and environmental condition
analysis. Yet, there remains a need for a workflow that facilitates
the generation and management of scenarios specifically aimed at
improving infrastructure resilience in the face of unforeseen events.

To bridge this gap, our study proposes a novel application of the
scan-to-BIM-to-digital twin (S-BIM-DT) workflow to support sce-
nario generation for informed decision making under uncertainty.
We focus on the postconstruction phase, specifically, renovations
and upgrades of those built infrastructures that were not initially
designed with these advanced technologies in mind. Our study
seeks to explore and address the following key research question:
“How can scenarios be generated to support decision making
under uncertainty to improve resilience in the built environment?”
Through the adoption of the S-BIM-DTworkflow in the built infra-
structure buildings and systems, our intent is to bridge the gap
between traditional and modern construction methods and promote
proactive preparedness for unforeseen challenges through an inte-
grated workflow. While our initial emphasis lies on addressing
natural disasters and health crises, the framework is adaptable to
a wide array of unforeseen events that may affect built environments.

The implementation of digital twins, despite their potential,
comes with considerable complexity and cost implications (Güngör
2019). The necessity for real-time data integration in construction
projects varies significantly depending on the specific requirements
of each use case (Ding et al. 2023). Dynamic environments benefit
from real-time scenario generation to quickly adapt to changing
conditions (Yan et al. 2021), whereas stable contexts can rely on
static models refreshed with up-to-date data sets (Osadcha et al.
2023). Our study demonstrates that focusing on the scan-to-BIM
phase can effectively support scenario generation without the need
for real-time data integration. We validate our approach’s ability to
generate useful scenarios for stakeholder decision making through
the successes of actual infrastructure use cases. We also discuss the
potential advantages and challenges of incorporating the full digital
twin workflow in future applications, grounded in two use cases.
Through this exploration, we aim to advance the construction in-
dustry toward a more informed, proactive, and effective develop-
ment paradigm that enhances resilience in the built environment.

Background Research

Scenario Generation

Scenario generation is crucial for enhancing infrastructure resil-
ience by exploring potential situations to support decision making,
especially in renovation and urban planning (Erdogan et al. 2019;

Kamari et al. 2021; Knies and Diermeyer 2020). Effective scenario
generation considers various factors and uncertainties, such as dis-
aster types and magnitudes, to assess and design adaptable infra-
structure for current requirements and withstand future challenges
(Kim and Newman 2020). This approach minimizes disaster
consequences and avoids extensive renovations and reconstruc-
tions, thereby strengthening the resilience of the built environment
(Fang et al. 2020; Rouhanizadeh and Kermanshachi 2020). For
instance, scenario generation enhances the effectiveness of emer-
gency response plans and contributes to community safety and
well-being (Giuliani et al. 2020; Lemaitre et al. 2021; Clark-
Ginsberg et al. 2021; Mohamed et al. 2019; Shah et al. 2020). How-
ever, traditional scenario generation methods often lack accurate
data sources and the ability to reflect ‘as-is’ conditions, limiting
their effectiveness in resilience planning (Wang and Yin 2022). For
example, Tabata et al. (2017) assessed disaster waste management
strategies in Minami-Ise, Japan, but their scenarios were con-
strained by insufficient inventory and incoming data, affecting the
reliability of their resilience efforts. Our proposed workflow ad-
dresses this gap by leveraging enhanced data sources to produce
more accurate and comprehensive scenarios.

Reality Capture: A Paradigm Shift through Scan-to-BIM

Developing reliable scenarios to enhance infrastructure resilience
requires collecting and processing substantial amounts of data
that are precise, exhaustive, and up-to-date to ensure dependable
simulations (Deng et al. 2021). Reality capture is an emerging ap-
proach that is revolutionizing the design, construction, and man-
agement of construction projects by optimizing data collection
quality (Fobiri et al. 2022; Ibrahim et al. 2022). Techniques like
light detection and ranging (LiDAR) and photogrammetry capture
current field conditions and convert the physical world into accu-
rate digital formats (Bravo et al. 2021; Xie et al. 2022). The data
create precise 3D models, maps, and other digital assets that sup-
port projects in different phases (Alizadehsalehi and Yitmen 2021).
Reality capture offers significant benefits over traditional surveying
and mapping methods in the context of enhancing infrastructure
resilience. It enables fast, accurate data collection, providing a re-
liable baseline for scenario generation and analysis of infrastructure
vulnerabilities (Fobiri et al. 2022). In contrast to traditional LiDAR
setups, unmanned aerial vehicles (UAVs) have become popular
tools in support of recent research, such as UAV-based photogram-
metry and UAV-LiDAR that is used for much more precise 3D
topographic data (Li et al. 2021). The scan-to-BIM process advan-
ces reality capture from data collection to constructing accurate
BIMs (Zhao et al. 2021). This approach overcomes issues with
outdated or inaccurate digital models based on traditional design
drawings, ensuring that digital representations present the true state
of the infrastructure (Boje et al. 2020).

Building Information Modeling

In the scan-to-BIM workflow, BIM serves as the integration hub,
ensuring seamless data transition into digital models. This integra-
tion solves data fragmentation, enabling comprehensive, accurate
digital representations (Sepasgozar et al. 2023). The architecture,
engineering, and construction (AEC) industry studies see BIM
as an essential part of the digital twin and a source of data that
includes computer-aided designs (CADs) and other relevant infor-
mation and files (Singh et al. 2021). BIM has traditionally been
viewed as a key data repository, aiding in the development of digital
models (Boje et al. 2020). The BIM-enhanced method improves
scenario generation by integrating precise data, resulting in more
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accurate predictions. For example, Zheng et al. (2023) demon-
strated BIM-CFD integration for simulating outdoor environments,
providing valuable decision making information. However, inte-
grating various engineering models poses challenges due to the
need for specific algorithms and data transfer mechanisms (Gilbert
et al. 2021). There has been an advancement toward the develop-
ment of more open data standards and the adoption of BIM. Re-
cently, efforts to develop open data standards, such as Industry
Foundation Classes (IFC), have promoted interoperability across
systems and stakeholders (Justo et al. 2021; Ostárek 2023; Zhao
et al. 2022). For large projects, time-series data can be stored in
a well-structured relational database for BIM, allowing effective
querying using structured query language (SQL) (Lu et al. 2020;
Tang et al. 2019). The recognition of the importance of data inte-
gration has stimulated developments in standards and technologies
to support integrated practices.

Digital Twins

This study explores extending digital twins beyond static modeling
by integrating internet of things (IoT) data for live updates and
immediate feedback loops for scenario testing. This advanced ap-
proach meets the need for sophisticated decision making tools in
handling complex, dynamic challenges. Kritzinger et al. (2018)
categorized digital forms into models, shadows, and twins based
on integration levels. From the perspective of data flows, a digital
model represents built assets that exist in the physical world and is
characterized by manual data flow between real and digital entities
(Sawhney et al. 2020). A digital shadow has a one-way automated
data flow from the physical entity to the digital entity and is
typically defined as an emulation of a physical asset or process
(Ladj et al. 2021). Digital twins feature automated bidirectional
data flow, allowing physical and digital entities to interact in-
telligently (Sepasgozar 2021). In construction engineering, digital
twins synchronize information to enhance design, construction,
and operational phases, enabling real-time convergence between
physical and virtual states (The Future Factory 2019). In advancing
automated data flow, IoT plays a crucial role. In the built environ-
ment, IoT devices have numerous applications, collecting real-time
data about status indicators such as temperature, air quality, and
other environmental factors (Al-Obaidi et al. 2022; Dallasega et al.
2017). Despite that, interoperability issues and a lack of standard-
ized protocols hinder IoT integration in the construction industry
(Khurshid et al. 2023; Tang et al. 2019). Recent research suggests

that integrating BIM, semantic web technologies, and relational da-
tabases can address these challenges, enabling IoT deployment
(Merino et al. 2023; Qiang et al. 2024). Digital twins help construc-
tion professionals understand the risks and benefits of different sce-
narios by simulating designs, performance, and impacts in a virtual
environment (Yitmen and Alizadehsalehi 2021; Ye et al. 2023).
However, no widely accepted digital twin definition exists in archi-
tecture, engineering, construction, operations, and management
(AECOM) (Chang-Richards et al. 2022). Adoption barriers include
expenses, legal considerations, and human factors.

Comparative Review of Scenario Generation
Approaches

Building upon the core concepts of scan-to-BIM with digital twins
(S-BIM-DT), it is imperative to compare current scenario genera-
tion approaches within the context of infrastructure resilience. A
comparative analysis offers insights into their efficacy, adaptability,
and application scope. Existing methodologies ranging from tradi-
tional approaches to advanced S-BIM and S-BIM-DT techniques
vary considerably in terms of procedural complexity, integration
capability, and end-use scenarios. Table 1 summarizes various
scenario generation approaches, highlighting method attributes,
practical applications, and references to literature.

Research Approach

Based on the background research section, scenario generation
processes frequently struggle with a lack of data sources and an
inability to effectively represent the existing conditions. Addition-
ally, the current approach to employing technologies in the AEC
industry is fragmented, hindered by a lack of comprehensive and
integrated methods. To bridge these gaps, this paper leverages the
S-BIM-DTworkflow to support scenario generation for unforeseen
challenges in the built environment. The workflow will be pre-
sented in detail, with each stage adaptable to the user’s specific
purpose. Given that this study aims to assess the capability of the
S-BIM-DT workflow in facilitating scenario generation, the break-
down of the process of turning BIM into a digital twin and IoT
implementation are presented more in general. By employing
scan-to-BIM and BIM-integrated models, it is achievable to effec-
tively develop preparedness scenarios. The S-BIM-DT workflow
also allows for fully achieving a digital twin model, if necessary,

Table 1. Summary of differences between different scenario generation approaches

Methods Highlights Applications Citations

Traditional methods Static modeling techniques with a manual
calculation.

Structural analysis and design feasibility. Hibbeler (2006)

Reliance on historical data for
environmental impact assessments.

Environmental impact studies and regulatory
compliance.

Lallawmzuali and
Pal (2023)

Predominant use of manual drafting and
two-dimensional CAD analysis.

Urban planning and land use optimization. Wood (2013)

Scan-to-BIM (S-BIM) Integration of multidisciplinary data for
the comprehensive model.

Advanced simulations for structural resilience and
resource efficiency.

Badenko et al.
(2019)

Accuracy and precision. Accurate 3D data to maintain and restore the built
environment.

Rocha et al. (2020)

Scan-to-BIM-to-digital
twin (S-BIM-DT)

Real-time data analysis. Smart infrastructure management and automation. Banfi et al. (2022)
Predictive analysis. Anticipate potential failures, optimize resource

allocation, and improve long-term planning.
Fahim et al. (2022)

Dynamic simulations incorporating
projections and patterns.

Predictive maintenance and adaptive solutions. Wagg et al. (2020)
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by continuously incorporating new data into future implementations.
The benefits of using digital twins in support of dynamic scenario
generation include enhanced accuracy and adaptability but come
with higher expenses in terms of setup and computational resources.

Fig. 1 presents an IDEF-0 diagram illustrating the five main
steps in the S-BIM-DT workflow. These steps are: reality capture,
data acquisition, integration of information into a digital represen-
tation, performing simulations and scenario generation, and the de-
cision making process. Detailed introductions to these steps are
provided in the following sections:

Step 1: Reality Capture

The initial phase of the S-BIM-DT workflow involves the
capture of as-built or as-is geospatial information from the built
environment, employing advanced and popular technologies and
techniques such as LiDAR, UAVs, and photogrammetry (Khanal
et al. 2020). The most common output from reality capture is a
point cloud, providing a precise 3D representation of the environ-
ment, capturing geometric intricacies and spatial arrangements
crucial for subsequent digital model generation (Xu et al. 2022).
Once the built environment has been captured, raw point clouds
are registered in a common coordinate system and merged into
a single point cloud. While automated registration methods are
available, the process often remains semiautomated (Neri et al.
2023). Specialized software tools are used for noise reduction, scan
alignment, and optimization to ensure data quality. This merged
data set then serves as the input for modeling procedures. It is
crucial to acknowledge that raw point cloud files, especially for
large areas, can be voluminous and require significant computa-
tional resources. This substantial size may present challenges with
data transfer, particularly in cloud-based or collaborative work
applications, necessitating fast internet connections and effective
data management procedures. Sometimes, the process involves
meshing and transforming the point cloud into a 3D mesh model
to facilitate manipulation and understanding before importing it
into BIM software (Momeni Rad et al. 2024). The time required
for this process varies with scanning complexity and the desired
level of detail in the BIM model. As the initial stage of the

workflow, this refinement ensures the model’s accuracy, laying a
solid foundation for subsequent phases.

Step 2: Data Acquisition

Incorporating sufficient data is crucial in the S-BIM-DTworkflow.
This phase involves extracting data and storing it in an organized
database. Key tasks include extracting, structuring, and transferring
data from collection points to the database, ensuring data integrity
and consistency to prevent errors and data loss. Sufficient data in
this context means having enough quantity, high quality, accuracy,
completeness, consistency, and interoperability for its intended pur-
pose (Fadlallah et al. 2023). This process requires strategically
deploying manual data collection methods, IoT devices, or both
throughout the built environment to collect data. Data collected
in this step are essential for the subsequent steps, requiring data
cleaning and regulation criteria to control this process. Both manual
and automated data filtering are necessary to eliminate extraneous
data, such as that resulting from moving objects, reflections, or sen-
sor artifacts, ensuring data integrity and quality control (Wen et al.
2024). Efficient data storage is essential, serving as a secure reposi-
tory for valuable data sets from diverse sources. A cloud-based da-
tabase is recommended to ensure synchronization of the most
recent changes and historical data, allowing for accurate generation
of back-and-forth scenarios (Tao et al. 2021). Because cloud data-
bases are equipped with tools for enhancing performance, auto-
mated backups, and data protection (Akhtar et al. 2021), the
potential for integration with other cloud services and application
programming interfaces (APIs) further enhances real-time data ac-
quisition capabilities. For example, we can extract real-time data
using public and IoT platform APIs (Markert et al. 2024; Vítor
et al. 2021). The scalability and adaptability of the cloud-based da-
tabase accommodate evolving data volumes and formats, enhanc-
ing the BIM’s abilities to effectively store and leverage valuable
information from the dynamic built environment.

Step 3: Integrating Information into Digital
Representations

Within the S-BIM-DT workflow, creating an augmented BIM
model is pivotal for expediting scenario generation. The process

Fig. 1. IDEF0 diagram depicting the S-BIM-DT workflow.
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begins by selecting a model-authoring tool that meets research re-
quirements and facilitates data exchange among multidisciplinary
stakeholders, including architects and engineers. Before integrating
data into the BIM model, meticulous data mapping and conversion
are crucial to ensuring alignment with the BIM software’s format and
structural requirements (Wefki et al. 2024). Therefore, the S-BIM-
DT workflow necessitates the seamless integration of diverse data
sets, organizing them in a manner consistent with corresponding
BIM elements. This integration addresses potential issues such as
data compatibility, handling large data quantities, and ensuring data
correctness and precision through specialized tools and procedures.
Interoperability is enhanced by using standards such as IFC when
necessary, facilitating effective data exchange among various soft-
ware applications (Shehzad et al. 2021). The framework also aims
to incorporate real-time data systems to synchronize BIM models
with digital twin platforms, preparing them for potential future im-
plementations. This comprehensive modeling effort is instrumental
in shaping the digital twin of the built environment, thereby strength-
ening the foundations for scenario generation.

Step 4: Performing Simulations and Scenario
Generations

The S-BIM-DT workflow employs various types of software and
tools to simulate and generate different scenarios based on user-
specific objectives. Even in the absence of a complete digital twin
model, BIM-based or BIM-enhanced platforms retain significant
value (Akbarieh et al. 2020). Additionally, other platforms are
available for specialized purposes, such as the geographic informa-
tion system (GIS) platform for landscape and urban planning. In the
workflow sequence, a comprehensive BIM incorporated into a
modeling platform provides precise data for simulations. A crucial
aspect involves implementing middleware or utilizing APIs to
streamline data transmission for scenario generation, ensuring com-
pliance with standards such as IFC when handling BIM data
(Schonhowd et al. 2023). Advanced platforms integrate powerful
analytics and simulation technologies to generate scenarios under
controlled variables and parameters (de los Campos et al. 2020).
Data visualization is also integral, offering a comprehensive and
actionable view of the built environment and potential scenarios.
This enables stakeholders to understand complex scenarios and
outcomes through sophisticated graphical representations, enhanc-
ing decision making and planning in the following phase (Bakhtiari
et al. 2024).

Step 5: Decision Making Process

Data-driven and comprehensive scenarios serve as the foundation
for strategic thinking and decision making (Bokolo 2023).
Determining which scenarios to pursue and how to expand them
involves a thorough review process considering multiple aspects.
This enhancement includes performing ‘what-if’ analyses to under-
stand the consequences of adjusting variables and their magnitudes
(Ciorna et al. 2024). The process begins with a comprehensive

evaluation of each scenario based on criteria such as feasibility,
potential impact, compliance with regulatory standards, and
alignment with long-term goals. Stakeholder engagement is essen-
tial during this phase to ensure that the scenarios meet the require-
ments and expectations of the community, designers, and engineers
(Prebanić and Vukomanović 2023). Chosen scenarios are further
developed by incorporating detailed elements such as infrastructure
requirements and resilience considerations. This development iden-
tifies infrastructure vulnerabilities, enabling resilience strategies to
improve the built environment’s ability to withstand and recover
from unforeseen challenges, such as extreme weather events.

Implementation of the S-BIM-DT Workflow in Use
Cases

This section validates the S-BIM-DT workflow for scenario gener-
ation through two real-world case studies, summarized in Table 2,
including the attributes and features of the tools used. In Use
Case A, the S-BIM-DT workflow was utilized by incorporating
a BIM-CFD integrated platform with simulated airflow models.
This integration aimed to improve the CTECC’s HVAC system,
enhancing overall efficiency and performance. Use case B, sup-
ported by the Southeast Texas Urban Integrated Field Laboratory
(SETx-UIFL), leverages S-BIM-DT workflow by incorporating
BIM with inundation simulations. This approach assessed the built
environment, aided in the renovation of the built infrastructure, and
aimed to design new climate-resilient infrastructure. The authors
also explore the workflow’s real-time data capabilities.

The CTECC Research—(Use Case A)

Background and Objectives
Use Case A leverages a combined transportation, emergency, and
communications (CTECC) research being developed by a munici-
pality in the Southern United States. This is a high-density, 24/7
call center used to dispatch first responders, manage transportation,
and conduct emergency management at the city and county levels.
Call centers, due to their high-density nature, pose mental and
physical health challenges for workers (Lin et al. 2009), which have
been exacerbated by the COVID-19 pandemic. To promote the
well-being and productivity of operators, the CTECC management
department looked toward holistic frameworks that assess the
existing HVAC system and design a postCOVID-19 HVAC system.
This system aims to support occupant health and ensure sustain-
ability against future airborne diseases. Key areas considered in-
cluded indoor air quality (IAQ), workstation layout, and thermal
control (Ceylan 2021; Chaiklieng and Poochada 2021). However,
The CTECC building manager faced challenges addressing dis-
patcher complaints due to difficulties in identifying problematic
floor vents. The visualization of temperature and airflow direction
was not possible with outdated 2D drawings, and the building
layout had changed due to workstation relocations. The goal of this

Table 2. Summary of differences between two use cases

Use case
Reality capture

approach
Collection
method

Capture
resolution

Output from
point clouds

Performance
goal

Use case
scenario Scale

Use Case A:
CTECC

LiDAR Manual Millimeters
(mm)-level

Interior
intricate models

PostCOIVD
airflow
optimization

Building
management

Project (single
infrastructure)

Use Case B:
SETx-UIFL

UAV
photogrammetry

Manual/
automatic

Centimeters
(cm)-level

Digital
elevation model

Flood resilience
plan

Urban planning Neighborhood
(infrastructure system)
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use case is to develop a BIM-enhanced CFD model that integrates
spatial data from the existing built environment with airflow sim-
ulations. This integration aims to identify and address indoor air-
flow and thermal comfort issues. Additionally, we aim to explore
the feasibility of enabling dynamic scenarios. These scenarios will
help identify indoor airflow issues and design changes to reduce
person-to-person airborne transmission of infectious pathogens.

Approaches
The S-BIM-DT workflow adapted to Use Case A is illustrated in
the IDEF-0 diagram in Fig. 2. Note that the unique features of this
specific use case are shown in red. Use Case A implements a com-
bination of LiDAR, a thermal imager, a cloud-based database,
model-authoring technologies, BIM, and a CFD engine.

STEP 1: Reality Capture
The main call center was captured and documented using a ter-

restrial LiDAR scanner [see Fig. 3(a)]. The raw data [see Fig. 3(b)]
produced are the departure point of the digital model. We selected
36 scanning locations for comprehensive coverage, where locations
were strategically chosen around the call center room’s perimeter,
exits, walkway intersections, and any changes in floor level.
Special attention was given to features such as HVAC vents,

cantilevered steel display walls, and the ceiling in an irregular shape
through the precise placement of the LiDAR scanner. Then, the 3D
point cloud was processed using a commercial tool, as shown in
Fig. 4. The model was refined by eliminating erroneous points that
obscured surface views, accurately documenting the room’s dimen-
sions and features (see Fig. 5).

STEP 2: Data Acquisition
Following dispatcher reports of inconsistencies in the HVAC

system, we assessed ventilation and heat sources. During the design
of the postCOVID-19 HVAC system, we obtained airflow param-
eters, such as supply flow rate and temperatures, from the CTECC
manager, incorporating IoT sensors when real-time analysis was
necessary. We used a thermal imager to capture temperature data
from floor and wall vents, as well as internal thermal loads such
as monitors [see Figs. 6(a and b)], to identify thermal imbalances.
Infrared and visible light images were fused for a comprehensive
engineering assessment. We reshaped and converted temperature
and airflow data into compatible formats, such as comma-separated
values (CSV) or network common data format (NetCDF).
The captured and processed data were stored on a cloud-based
drive on the University of Texas server and can be extracted
to Step 3.

Fig. 2. IDEF0 diagram of S-BIM-DT workflow in Use Case A.

Fig. 3. LiDAR scanning conducted at CTECC: (a) terrestrial LiDAR scanner; and (b) an example of 360 image at CTECC.
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STEP 3: Integrating Information into Digital Representation
We integrated the 3D point cloud generated from Step 1 into

the BIM environment [see Fig. 7(a)], providing a precise digital
representation of the physical and functional characteristics of

CTECC’s room. The BIM was further developed using captured
geospatial data in a model-authoring tool as the modeling platform
[see Figs. 7(b and c)]. The model produced in the commercially
available model-authoring software system is shown in Fig. 8.
In addition to geospatial data, the BIM integrates temperature read-
ings and other relevant data sources, such as HVAC parameters and
occupancy information. This comprehensive data integration is cru-
cial for supporting the subsequent steps.

STEP 4: Performing Simulations and Generating Scenario
Through thorough assessment, it was determined that two air

handling units (AHUs) provide ventilation, with floor vents evenly
dispersed across the area. Based on the data obtained from the steps
before, including HVAC documentation, site investigation, and the
generated digital model, CFD modeling is ready to be simulated.
Before the simulation, we segmented the model into a section view
that shows the workstation layout and the vents on both the wall
and the ground. After running a sample simulation, Fig. 9 illustrates
the airflow originating from the wall and floor vents, showing the
temperature, direction, and distribution of air to the workstations.

Outcomes and Discussions
The CFD modeled various scenarios considering pathogen source
position, partition geometry, and airflow characteristics based onFig. 4. Axonometric images were generated via a LiDAR scanner.

Fig. 5. Dimension measurements of the CTECC.

Fig. 6. Temperature readings from thermal scanning: (a) temperature of a ground vent; and (b) temperature of a monitor.
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Fig. 7.Model-authoring software system integrates with point cloud data: (a) modeling based on point cloud; (b) detailed BIM model; and (c) section
views.

Fig. 8. Visualize the model generated from the model-authoring tool.

Fig. 9. An example of airspeed and temperature from the CFD model.
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actual spatial locations [see Fig. 10(a)]. For CTECC’s interior
renovations to prevent future infections and outbreaks, the authors
investigated several factors:
1. Pathogen Source Location: Evaluated how a dispatcher’s

position (standing versus seated) affects airflow [see Fig. 10(b)
versus Fig. 10(c)].

2. Diffuser Position Relative to Infector: Compared scenarios
where the supply diffuser and infector are in different partitions
versus the same partition [see Fig. 10(c) versus Fig. 10(e)] to
assess the capability of preventing infectious propagation by
housing the infector and supply diffuser in the same partition.

3. Floor Diffuser Position: Examined airflow changes with one
diffuser per three cubicles versus a diffuser positioned in each
cubicle [see Fig. 10(c) versus Fig. 10(d)].

4. Partition Design: Investigated the impact of partition height and
type, suggesting that raising partition height and adding sliding
doors for individual workstations could decrease person-to-
person exposure [see Fig. 10(d) versus Fig. 10(f)].
While the highest level of precision required for modeling

airflow in our CFD simulations was in the centimeter (cm) range,
using millimeter (mm) precision from the reality capture step

becomes valuable when selecting specific retrofit solution details.
Leveraging this insight, we analyzed the CFD to develop a func-
tional retrofit solution using displacement ventilation, which sup-
plies outdoor air near occupants. This approach provides better air
quality compared to mixing ventilation, while achieving the same
exposure reduction with mixing ventilation would require more
fresh air and cause more energy for air conditioning. An additional
energy-saving benefit of displacement ventilation is its focus on
cooling the occupied space while allowing the area above 3 meters
to remain warmer. The large temperature stratification created by
displacement ventilation cools the occupied zone to the setpoint
temperature, reducing the energy required for cooling the upper
part of the room. We identified measures aligning with desired out-
comes and proposed these to the building manager and stakehold-
ers to enhance IAQ through improved ventilation efficiency and
reduced person-to-person exposure, as determined by CFD scenar-
ios. For example, we recommended increasing the height of space
partitions and using sliding doors for cubicles. Additionally, we
suggested assessing the retrofit of AHUs to operate with high-
efficiency particulate air (HEPA) filters and adjusting the under-
floor AHU to supply 100% fresh air. This capability enhances

Fig. 10. The pathogen concentration distribution shown in the CFD model: (a) an example of pathogens concentration (red is a source);
(b) concentration of pathogens with standing infector; (c) concentration of pathogens with seating infector; (d) concentration with diffuser in each
partition; (e) diffuser and infector in the same partition; and (f) high partition and diffuser in each partition.
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air quality within the facility and ensures compliance with health
and safety standards by continuously monitoring and adjusting the
air supply based on environmental conditions and occupancy lev-
els. As part of the overall IAQ and ventilation improvement strategy
for Use Case A, our research team also recommended repositioning
the return grilles and ducts and decreasing occupant density. In the
end, the CTECC management group has decided to follow our rec-
ommendation of replacing floor diffusers to achieve an underfloor
AHU that can provide 100% fresh air. This research use case dem-
onstrates that the S-BIM-DTworkflow facilitates the decision mak-
ing on reconfiguring the workstation layout and designing the
ventilation system for an optimal airflow solution. Our findings
support the literature emphasizing the need for accurate, up-to-date
data and advanced modeling techniques in enhancing infrastructure
resilience (Deng et al. 2021; Sepasgozar 2021). This approach sim-
plifies identifying potential problems and presenting effective so-
lutions, especially in the absence of detailed drawings for interiors
with intricate designs. Traditional methods, which rely on physical
plans or less integrated digital approaches, would likely struggle
with such complexity, particularly when updates or changes are
not reflected in existing documentation (Abdullahi et al. 2023).
In contrast, scenarios visualized in CFD, generated from integrated
information, assist stakeholders in comprehending and making de-
cisions more effectively than relying on tedious technical reports.
The outcomes persuasively demonstrate the practical utility and
benefits that the scan-to-BIM phase of the S-BIM-DT workflow
provides to the building management domain. We generated sce-
narios using a cycles per instruction (CPI) computer with two
processors that includes a 16-core CPU and 68GB of RAM.
The average simulation time was approximately 30 min. We set
up a robust data management and transmission workflow, termed
S-BIM-DT, to ensure the efficient handling of collected data. The
workflow allows continuous data entry into the simulation, ena-
bling fast fluid dynamics simulation on the GPUs (Choi and Sung
2024; Lyu et al. 2024). Consequently, CFD depicts airflow patterns
and behavior in dynamic scenes, such as detecting abnormal air-
flow and temperature imbalances. This highlights the potential to
implement real-time features.

Limitations and Future Work
One of the challenges was the lack of detailed architectural plans
for intricate interiors, making it difficult to interpret LiDAR data.
We recommend incorporating geospatial references in future reality
capture processes to improve precision and spatial understanding.
In addition, scanning occupied spaces was also challenging due to
dense workstations and office supplies, resulting in slightly blurry
point clouds in two corners. However, this did not affect the re-
search team’s ability to create models and alternative scenarios.
The duration of the scans and the number of scan points were lim-
ited to minimize the impact on facility operations, balancing detail
with operational impact. Public acceptance and concerns about pri-
vacy, noise, and intrusion need to be addressed when conducting
LiDAR scanning in an occupied environment. Due to the special
nature of the CTECC, all data, regardless of sensitivity, must com-
ply with stringent cybersecurity protocols. This regulation may
cause delays or restrict the implementation of advanced technologi-
cal solutions. In contrast, traditional methods, where data security
concerns are generally less pronounced due to the offline nature
of data handling, do not face such constraints (Krempl et al.
2014). Data synchronization and the complexity of calibrating
CFD models to accurately present physical environments can be-
come cumbersome and error-prone with continuous data updates.
Future research opportunities include leveraging machine learning
to effectively detect abnormal airflow and temperature imbalances.

This approach could enable the system to identify specific airflow
scenarios, alert users, and pinpoint the most critical vents respon-
sible for the issues, thereby saving time by obviating the need for
manual inspections of each vent or AHU individually. Future re-
search also has the potential to identify optimal solutions for
managing these imbalances, further enhancing the efficiency and
resilience of infrastructure systems.

Contributions
This experiment is an enlightening reference for those infrastruc-
tures with a similar working environment to Use Case A, operating
24/7 and performing essential and high-stress work. It informs
stakeholders about approaches to accurately assessing building per-
formance and facilitates the decision making process by planning
various scenarios. Solutions such as improved postCOVID HVAC
systems and adjustments to workstation layout provide dispatchers
with a healthier workplace to face unforeseen challenges. The study
particularly demonstrates the benefit of the S-BIM-DT workflow
for scenario generation in a built environment, contributing both
to theory and practice in the domain of infrastructure resilience.
For instance, the CTECC has replaced its floor diffusers, doubling
their number and halving the flow per diffuser. The new layout in-
cluded one diffuser per cubicle. These renovations enhance resil-
ience, ensure the facility remains operational, promote adaptability,
and integrate a long-term outlook on community service and re-
source utilization, prioritizing the uninterrupted operation of essen-
tial services during unexpected events.

The Southeast Texas Urban Integrated Field
Laboratory Supported Research—(Use Case B)

Background and Objectives
Southeast Texas is home to the world’s largest oil refinery, a key
asset to the global energy industry. This region faces multiple
environmental challenges, including the risk of flooding and air
pollution. As the region’s population continues to increase, under-
standing the potential consequences of these hazards, especially re-
garding the local economy and climate dynamics, becomes crucial.
The SETx-UIFL supports the research, which seeks to explore how
environmental hazards may impact communities in Beaumont-Port
Arthur and aims to find equitable and effective climate solutions for
communities caught between floods and air pollution. An inte-
grated workflow for scenario generation is critical in the strategy
codesign process, where codesign is a collaborative process that
involves various stakeholders in the creation of solutions. The
workflow is tasked with assisting stakeholders in envisioning and
understanding the physical and social implications of codesigned
strategies. In Use Case B, the authors experiment with the S-BIM-
DTworkflow in urban planning at the neighborhood scale to facili-
tate the scenario generation process, foster equitable adaptation
strategies, design new infrastructure, and promote the resilience
of existing infrastructure. In particular, the authors selected an area
in the region that currently houses a pump station as a flood infra-
structure system. The S-BIM-DT workflow is expected to enhance
the understanding of hazards and their implications for pump sta-
tion operation through various scenarios. These might include the
expansion of pump stations and the enlargement of buffer zones
such as green areas, consideration of various flood levels, and in-
vestigation into the feasibility of constructing more residential
buildings.

Approaches
The S-BIM-DTworkflow adapted to Use Case B is illustrated in the
IDEF-0 diagram in Fig. 11, with the unique features of this specific
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use case highlighted in red. The tool implemented in Use Case B
for the purpose of scanning and modeling the space was a combi-
nation of drone aerial photogrammetry and a cloud-based and
relational database that stores aerial images, processed maps, and
prerequisite data for simulating inundation maps.

STEP 1: Reality Capture
Prior to conducting reality capture, the drone flight path was

planned using commercial drone mapping software to enable
autonomous flight and the capture of aerial photographs. A total
of 3,445 aerial photos were collected and uploaded to a drone map-
ping and data analysis platform, as shown in Fig. 12. Fig. 13(a)
presents one of the captured aerial images. These aerial photos
are ideal data sources for photogrammetry due to their geotagging
capabilities. The latitude, longitude, and altitude from the drone’s
global positioning system (GPS) and onboard sensors are em-
bedded within the metadata of each aerial image as it is captured.

A point cloud generated from aerial imagery is an indispensable
output of reality capture, as visualized in Fig. 13(b). The point
cloud is a collection of three-dimensional points representing the
surface of the mapped area and serves as the foundation for creating
precise and detailed 3D models, as shown in Fig. 13(c). In this use
case, the generated point cloud enables the extraction of elevation
information from the Halbouty pump station and its surrounding
area, as shown in Fig. 13(d). Finally, a highly accurate topographic
map embedded with contour lines, as shown in Fig. 13(e), provides
a direct visualization valuable for land surveying tasks.

STEP 2: Data Acquisition
We acquired data in support of our inundation simulations

including digital elevation models (DEMs), catchment data, flow-
lines, and water discharge data. Regional DEMs are sourced from
the United States Geological Survey (USGS) (Iii et al. 2024). We
acquired higher-resolution DEMs through processed point clouds

Fig. 11. IDEF-0 diagram of S-BIM-DT workflow in Use Case B.

Fig. 12. Annotations for aerial photos via drone mapping software. (Image by Linchao Luo.)
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in Step 1 to enhance the precision of our simulations for the specific
target area. Additionally, flowline and catchment data are also ac-
quired from the USGS. We utilized the one-hour interval water dis-
charge data and historical records from the National Oceanic and
Atmospheric Administration (NOAA) and converted the National
Water Model (NWM) discharge data into NetCDF format to ensure
data compatibility. All the data mentioned ensure precise simula-
tion of flood inundation scenarios by combining high-resolution
topographic data with reliable hydrological network information.

STEP 3: Integrating Information into Digital Representations
We effectively transferred and integrated data from previous

steps to expedite the inundation simulations in collaboration with
the Texas Advanced Computer Center (TACC). This integration
streamlines the development of multiple scenarios. Additionally,
we visualized the integrated data using GIS (see Fig. 14). This visu-
alization supports stakeholders in understanding the built environ-
ment of the target area within its urban context. In the next step, we
will also visualize inundation scenarios on the GIS platform.

STEP 4: Performing Simulations and Generating Scenarios
We leveraged GeoFlood, a computationally efficient flood inun-

dation mapping tool to generate inundation scenarios. GeoFlood
computes flood inundation extent and depth under uniform con-
ditions along river segments, including channel and floodplains,
and delineated from flow directions, by combining two methods,

GeoNet, an advanced method for terrain data analysis (Passalacqua
et al. 2010; Sangireddy et al. 2016), and height above nearest drain-
age (HAND) (Zheng et al. 2018). Finally, we delineated a flood
map by using input discharge from NOAA as peak flow distributed
along the river network. Detailed information and usage instruc-
tions for GeoFlood are available in Zheng et al. (2018). For exam-
ple, the inundation scenarios, based on weighted water discharge
data from historical Hurricane Harvey and a smaller rain event in
2023, help stakeholders see how the built environment appears on a
street map and where inundation is to extend (see Fig. 15).

Outcomes and Discussions
Our research group generated inundation scenarios representing
different levels of flooding caused by Hurricane Harvey. Fig. 16(a)
illustrates the full extent of Hurricane Harvey’s impact, while
Figs. 16(b and c) depict scenarios with 50% and 25% of the flood
severity, respectively. Stakeholders and local communities evalu-
ated whether the existing urban landscape could support the devel-
opment of new neighborhoods while assessing the effects of severe
climate events on local communities. This included examining the
resilience of the current infrastructure. The inundation scenarios
provided critical insights, revealing that building new neighbor-
hoods on the current landscape is not feasible unless the capacity
of existing flood-blocking infrastructure is improved (see Fig. 16).

Fig. 13. Drone-captured aerial imagery and processed models of the Halbouty pump station: (a) aerial imagery; (b) generated point clouds;
(c) 3D model; (d) 3D model with elevation data; and (e) 3D model with contour lines. (Images by Linchao Luo.)
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Stakeholders then decide whether to extend the Halbouty pump sta-
tion or expand the detention pond across the area to ensure that the
planned new neighborhoods are not severely affected by flooding
events.

GeoFlood creates inundation extents and water depth grids at
multiple stage levels, making it a promising flood mapping strategy

for future applications. Inundation generated from GeoFlood ex-
tents overlaps between 60% and 90% with those of the Federal
Emergency Management Agency (FEMA) floodplain coverage
(Zheng et al. 2018). When the GeoFlood area is compared to
the FEMA-flooded area by local drainage catchment for each river
segment, the results indicate a high level of accuracy, suggesting

Fig. 14. Integrated data visualization.

Fig. 15. Visualization of an inundation scenario.

Fig. 16. Inundation scenarios from different levels of Hurricane Harvey impact: (a) Hurricane Harvey inundation scenario; (b) 50% of Harvey impact
inundation scenario; and (c) 25% of Harvey impact inundation scenario.
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that overall, the flood extent generated by the GeoFlood method
closely matches the FEMA benchmark. This accuracy represents
an ideal tradeoff between speed and precision, as GeoFlood was
designed to capture inundation patterns to guide real-time flood
disaster preparedness and response. This capability is significantly
faster than traditional hydraulic modeling methods. We generated
scenarios on an Intel i9-9900 3.10 GHz 8-core CPU, 32GB RAM,
and NVIDIAQuadro RTX 4000 GPU. We utilized consecutive data
from NOAA-measured discharge and achieved near real-time inun-
dation simulation. The average inundation simulation time is ap-
proximately 10 min, which we define as near real-time based on
recent publications (Brown et al. 2022; Dai et al. 2024; Joseph
et al. 2023; Ming et al. 2024; Nielsen et al. 2024; Overeem et al.
2024).

In this use case, we shifted focus to the realm of decision mak-
ing within the larger context of infrastructure resilience, particularly
under the influence of uncertainty. Our current achievements pro-
vide a solid foundation for future endeavors in data integration and
visualization. It is worth noting that the S-BIM phase provides a
distinct advantage over ground surveys by capturing extensive data
across large regions. Unlike traditional ground surveys, which can
be hindered by physical obstacles and property restrictions, drones
can easily access and gather data from otherwise inaccessible envi-
ronments (Emimi et al. 2023). Since the HAND was evaluated over
the continental United States using a 10 m/pixel DEM (Liu et al.
2018), it may cause the inundation simulations to be less accurate in
a specific area, particularly concerning infrastructure and neighbor-
hood surroundings. By implementing our proposed workflow,
drone photogrammetry allows us to generate DEMs with resolu-
tions of a few inches per pixel. These high-resolution DEMs and
elevation data refine the inundation simulations by acting as de-
tailed surface layers, resulting in more accurate presentations of
inundation scenarios. This enhanced accuracy enables stakeholders
to determine, for example, the percentage of the neighborhood that
will be impacted and the volume of stormwater the infrastructure
must manage. Such precise visualizations support stakeholders in
making more informed decisions regarding resilience planning in
the built environment under uncertainty. We published our col-
lected data in the Environmental System Science Data Infrastruc-
ture for a Virtual Ecosystem (ESS-DIVE) (Luo et al. 2023),
providing sufficient geometric data and the status of the land sur-
face to researchers.

Limitations and Future Work
Despite advancements, drone-based photogrammetry may pose
limitations for broader urban planning applications. Battery life
constraints require multiple flights, leading to time-consuming
recharging and potential data inconsistencies. Urban drone flight
regulations regularly limit altitudes, paths, and proximity to build-
ings and people. For instance, the flight path near the Halbouty
pump station was restricted due to its proximity to an airport, af-
fecting airspace access which caused us to narrow down the area.
However, even with these limitations, achieving resolutions of a
few inches is still much better than the 1-meter DEMs offered
by the Texas Natural Resources Information System (TNRIS).
Neighborhood-scale urban areas often feature complex buildings,
trees, and other obstacles that can block the drone’s line of sight to
target objects. Shadows, reflections, and occlusions can also impact
data quality and precision in outdoor urban environments. The
S-BIM-DT workflow introduces complexities not seen in tradi-
tional methods, such as integrating massive volumes of data in
diverse formats and structures, which requires significantly more
computational resources. For example, simulating high-resolution
DEMs in modeling tools demands more computing power. These

insights motivate us to continuously refine the S-BIM-DT work-
flow to better support complex scenario analysis. For instance,
we are exploring the use of optimization algorithms to obtain op-
timal design solutions to enhance infrastructure resilience under
uncertainty.

Contributions
By innovatively integrating drone-based photogrammetry with the
GeoFlood inundation modeling tool, we generated high-resolution
DEMs, thereby advancing flood modeling by demonstrating that
high-resolution terrain data significantly enhances simulation pre-
cision. We adapted the S-BIM-DT workflow for neighborhood-
level urban planning and integrated diverse data sources such
as drone imagery, USGS data, and NOAA data into a unified
workflow, demonstrating its flexibility and applicability beyond
building-scale infrastructures and extending its utility to larger,
more complex urban environments. The multiple detailed scenarios
we generated enhance the theoretical framework for scenario
generation under uncertainty, providing stakeholders with method-
ologies to assess various strategies for improving infrastructure
resilience. The rapid inundation simulations offer precise visualiza-
tions of potential flood impacts, empowering stakeholders to make
informed decisions regarding infrastructure resilience planning and
emergency preparedness. We achieved near real-time inundation
simulations using one-hour interval water discharge data from
NOAA, proving the potential for immediate flood disaster prepar-
edness and response, directly impacting community safety and
resource allocation during flood events. Research findings in
Southeast Texas are expected to be generalizable to other regions
and improve the resilience of vulnerable communities across the
globe.

Conclusions

The development of an informed decision making process is essen-
tial to the resilience of our built environment. This study pre-
sented a workflow that encompasses a scan-to-BIM-to-digital twin
(S-BIM-DT) that supports scenario generation to enhance this pro-
cess. By bridging the scan-to-BIM applications with the practical
needs of infrastructure resilience, our research advances both theo-
retical understanding and practical application in this domain. The
paper also explores the benefits and feasibility of implementing the
entire S-BIM-DT workflow to enhance the use of digital twins in
scenario generation. The effectiveness of the S-BIM-DT workflow
was demonstrated through two real-world use cases. The first, the
CTECC research in Austin, Texas, integrated a digital model with
simulated airflow models to create alternative scenarios to address
operational challenges. This research improves IAQ and reduces
the risk of airborne disease transmission by reconfiguring the
HVAC system and workstation layout. The second use case, the
SETx-UIFL-supported research, combined digital models and
environmental simulations to assist in designing and maintaining
climate-resilient infrastructures, focusing on flood infrastructure
and climate impact analysis. These applications illustrate how the
workflow aids stakeholders in making informed decisions that
strengthen infrastructure resilience. However, several challenges
were identified, such as integrating massive volumes of data in
diverse formats and structures, requiring significantly more compu-
tational resources. Addressing these issues is crucial for fully real-
izing the S-BIM-DT workflow’s potential. Future research could
focus on leveraging machine learning and optimization techniques
to generate scenarios more effectively, conserve computational
resources, and manage large data sets efficiently. These advance-
ments would help stakeholders identify optimal solutions quickly,
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thereby enhancing the workflow’s effectiveness in resilience plan-
ning. The S-BIM-DT serves as an empowering tool that bridges
technological advancements and practical application needs, con-
tributing substantially to developing a resilient built environment to
navigate unforeseen challenges. The S-BIM-DT workflow allows
stakeholders to generate and evaluate a vast array of scenarios,
and promote a decision making process imbued with wisdom. This
contributes substantially to developing a resilient built environ-
ment, providing valuable insights and strategic approaches for
future research.
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