Getting On Track:

Optimizing Rail for the Austin-San Antonio Megaregion

Final Presentation

Special thanks to our guest speakers & advisors

Dr. Robert C. Andrews, Jr., P.E President & CEO Principal Fire Protection Engineer Principal Rail Engineer San Antonio, TX

John Langmore Former CTRMA Board Member Photographer/Attorney Austin, TX

Jimi Mitchell
Principal, Nelson\Nygaard
Consulting Associates
Los Angeles, CA

Ross Bowman Senior Vice President, Bowman Engineering and Consulting Dallas, TX

Alvin Livingstone Senior Director, Design and Construction Austin Transit Partnership Austin, TX

Christy Muse
Nonprofit and Philanthropic
Strategic Consultant
Former ED, Hill Country Alliance
Spicewood, TX

Jeff Davis
Director of Rail Division
Texas Department of Transportation
Austin, TX

Boris Lipkin Northern California Regional Director at California High-Speed Rail Authority San Mateo, CA

Sofia OjedaDirector of Design, Orange Line
Austin Transit Partnership
Austin, TX

Emma Hilbert
Policy Counsel, Office of Travis
County Judge Andy Brown
Austin, TX

Representative Ray Lopez
Texas House Member, District 125
San Antonio, TX

Bryan Rodda Lead Community Planner Federal Railroad Administration Washington, D.C.

Jonathan HopkinsFormer Brightline Head of Mobility
Miami, FL

Ross Milloy President Austin-San Antonio Corridor Council ATX - SATX

Jerry Smiley
Vice President and Senior Program
Manager AECOM 5
Arlington, TX

Agenda

- 1. History
- 2. The Problem & The Opportunity
- 3. The Solution: A Tale of Two Projects
- 4. Freight Considerations
- 5. Passenger Considerations
- 6. Conclusion

Austin - San Antonio Rail Corridor Overview

- Union Pacific owns right of way through Austin-San Antonio corridor
- Previous conversations to relocate have been unsuccessful
- Union Pacific has no current incentive to move
- Operations:
 - The right-of-way varies between 50 and 100 ft
 - Tracks designed for 70 mph but used at an average of 25 mph
 - Carries construction materials, coal,
 chemical products, and many NAFTA goods

Guiding Questions

- 1. What is the ideal alignment and why?
- 2. Where is the opposition going to come from?
- 3. Where is the subsidy going to come from?
- 4. Who stands to make money?

Outside of Report Scope

Detailed alignment recommendations

Recommended operating details (for freight or passenger rail)

Precise station locations

History

History Problem/Opportunity The Solution Freight Corridor Passenger Corridor Conclusion

Freight Line History

- Austin-San Antonio rail line originally established by International-Great Northern Railroad
- Missouri Pacific (MoPac) Railroad acquired line in 1920s and merged with Union Pacific in 1982
- This rail line has played an integral in the region's economic development, helping move goods across the region and country

National Deregulation of Freight Safety Requirements

- Freight deregulation is highly contentious
- Critics argue deregulation has led to lower safety standards, higher risks for workers and the public
- Examples include:
 - Staggers Rail Act of 1980 (limited gov. ability to regulate rates)
 - 2016 withdraw of long-held rail industry safety rule requiring twoperson crews

History Problem/Opportunity The Solution Freight Corridor Passenger Corridor Conclusion

Central Texas Population

History Problem/Opportunity The Solution Freight Corridor Passenger Corridor Conclusion

Texas Passenger Rail Context

- Texas trails other states in passenger rail development, forgoing economic opportunities
 - TxDOT builds roads
 - Lack of clear goals and initiatives
 - Limited pursuit of funding
- Austin-San Antonio regional growth
 - Population growth
 - Economic development
 - Infrastructure investments

Source: Federal Railroad Administration

Lone Star Rail

Past efforts

Texas Central

What Has Changed Since These Projects?

Federal infrastructure bill increased passenger rail funding

TxDOT applied for federal passenger rail study funding for the first time

Recent freight derailments have mounted political and social pressure to improve safety

Public sentiment towards climate crisis has created interest in more sustainable transportation systems

Automobile costs have continued to rise, creating financial strain and stress on American households

The Problem & The Opportunity

Clear and Present Environmental Dangers

- Relaxed safety standards = more derailments
- Approximately three trains derail each day in the US
- 5,000 HazMat spills or leaks in the last decade

Unsustainable Growth

- The Austin-San Antonio corridor is home to 4.3M and expected to double by 2030
- Annual population growth is 3% year over year in the region
- Sprawl in outskirts of the cities incentivizes use of private vehicles

I-35 is Overburdened

- For each 1% increase in population, there is a 3-4% increase in traffic on I-35
- Most congested road in Texas for truck causing mayor delays
- Annual congestion costs between Austin and San Antonio are \$500M

Existing Amtrak Service

Existing Amtrak service is slow and unreliable

- Track priority not enforced
- One train per day
- Long run times
- 1+ hour delayed ~70% of the time

Current Amtrak Stations

Station	Taylor	Austin	San Marcos	San Antonio
Centrally Located	~	✓	×	0
Multimodal Connectivity	×	0	/	0
Shelter/Building	Shelter	Building	Shelter	Building
Ticket Counter/ Kiosk	×	~	×	~
Bathroom	×	~	/	~
Wifi	×	×	×	×
Vending Machines	×	~	/	~
Cafe	×	×	×	×
Nearby Amenities	~	×	×	0
= present = absent = present to a degree				

The Opportunity

- Re-domestication of production to North America (China → Mexico)
- Canadian Pacific-Kansas City Southern merger (now CPKC) is a strong NAFTA move
- 48% of U.S. NAFTA products are transported through Texas using the I-35 corridor
- Union Pacific is market leader in the corridor

The Solution: A Tale of Two Projects

Address the two projects separately

Alignment Alternatives

1. Along I-35

History

- 2. New greenfield passenger rail alignment
- 3. Expanded Union Pacific ROW
- 4. Union Pacific relocated to the east

Conclusion

A Win-Win Situation

Union Pacific gets:

- Improved efficiency
- Opportunity for growth
- Tracks with cost-effective grade separation and safety features

The public gets:

- High performance passenger rail service
- Separation from hazardous materials
- Economic development opportunities
- Traffic reduction

Texas Railroad Advancement Corporation

A re-brand of LSRD

- New project requires new identity
- TRAC will be the leading agency for both projects and their delivery
- A re-brand allows for the same powers as LSRD
 - Collect revenue
 - Issue debt
 - Solicit federal funds

Texas Rail Advancement Corporation

Freight Rail Relocation Recommendation

The Vision

Union Pacific

- With today's line...
- With the Bluebonnet Bypass...

Costs

History

- Average: \$54 million per mile
- Total cost: \$14-16 billion

Benefits

- Increased speed + capacity
- Economies of scale
- Costs would be shared, so Union Pacific's net benefit will be greater

Existing federal programs:

- **RRIF** (Railroad Rehabilitation and Improvement Financing)
- **TIFIA** (Transportation Infrastructure Finance and Innovation Act)

Proposed program:

 Central Texas local freight development fund

History

NEPA

Complicated process requiring strong project definition

- Must prioritized and plan for NEPA throughout the entire process
- NEPA is where we humanize the project
 - Community engagement
 - Engineering and design of tangible objects
- Coordination with other entities

Passenger Corridor

ಕ್ರೀತ್ರೆ Bluebonnet ಕ್ರೀತ್ರ Express

History

- 1. Downtown Austin
- 2. Kyle/Buda
- 3. San Marcos
- 4. New Braunfels
- 5. Downtown San Antonio

The Vision

Shireen

History

- Today...
- With the Bluebonnet Express...

Costs

History

- Average: \$54 million per mile
- Total cost: \$3-5 billion

Benefits

- Connected communities, improved quality of life, better use of time
- \$639 million in annual tax revenue
- \$2 million in decreased annual toxic emissions
- 51,000 project jobs, 2,500 permanent jobs created
- \$600 million from extended life of highways

Capital Financing

Existing federal and state programs:

- **FSP** (Federal-State Partnership)
- CRISI (Consolidated Rail Infrastructure and Safety Improvements)
- RRIF (Railroad Rehabilitation and Improvement Financing)
- **TIFIA** (Transportation Infrastructure Finance and Innovation Act)
- **TIF** (Tax Increment Financing)

Operational Financing

Possible funding streams:

- Dedicated local taxes/specific fees
- State and local bonds
- Motor fuels tax
- State transportation fund
- State general fund

Legislative asks

- Local/state to help fund NEPA process
- Update safety regulations at federal and state level
- Use State Infrastructure Bank (SIB) to match federal financing
- Use State gas tax to be used for rail in addition to roads

History

Broad Political Array

A line from ATX to SATX crosses a broad array of stakeholders

- Urban, suburban, and rural
- Residents, ranchers, renters, owners
- Varied political powers and priorities

We need a Republican champion in the state legislature.

History

Conclusion

Bluebonnet Bypass and Bluebonnet Express Project Delivery

NEPA

History

Complicated process requiring strong project definition and strong relationship with community stakeholders

- NEPA is where we humanize the project
 - Community engagement
 - Engineering and design of tangible objects
- Coordination with other entities

Problem/Opportunity The Solution **Freight Corridor** Passenger Corridor Conclusion

Land Use

History

Station development = opportunity to create a destination

Stations should:

- Improve citizen quality of life
- Maximize potential revenue
- Increase transit ridership

Station Design and Multimodal Connections

Key to increasing ridership and improving quality of life

- Can help solve the first/last mile problem
- Some strategies include:
 - Timed transfers
 - Crosswalks and ped safety elements
 - Bike parking
 - Shared micro-mobility

History

Conclusion

Recommendations:

- Approach the project as two separate, but related efforts
- Reframe the Union Pacific relocation as a safety <u>need</u> with added economic opportunities
- Identify a political champion/s to shepherd the process
- Empower a leading organization who can manage the NEPA process
- Employ available funding and financing strategies to build the passenger and freight corridors
- Leverage the opportunity for transitoriented development

Thank you

Appendix

Problem/Oppor	tunity	History	The Solution		Freight C	Corridor	Passenger Corri	dor	Conclusion
Alternative		Benefits for l	JP	Dr	rawbacks for UP	Benefit	s for residents	Dra	awbacks for residents
1. I-35	• None			che in l	izardous emicals remain heavily pulated areas	existing po • Freight and operate on	ould be located near pulation centers I passenger trains separate ROWs little displacement	• Cu re • W	azardous chemicals remain in eavily populated areas urvature of highway would equire trains to go slower fould require significant olitical capital to get TXDOT on pard
2. New Greenfield Passenger Alignment	• None			che in l	izardous emicals remain heavily pulated areas	_	I passenger trains separate ROWs	• W di w	azardous chemicals remain in eavily populated areas 'ould require significant splacement at high cost or ould be located far from kisting population centers
3. Add additional tracks for passenger rail on existing Union Pacfic		aded track e separated crossings		che in l	zardous emicals remain heavily pulated areas		ould be located near pulation centers	he • Fr	azardous chemicals remain in eavily populated areas eight and passenger trains perate on the same ROW
4. Relocate freight rail to eastern alignment	New fGradeRemore areas	freight line is potentially located	ncements heavily populated	cos as no	me existing stumers, such quarries, may longer be rved	from heaviStations we existing poFreight and operate on	lazardous chemicals ly populated areas ould be located near pulation centers I passenger trains separate ROWs little displacement	• Ha	isplacement of ranchers azardous chemicals still cated near smaller population enters
UP = Union Pacific, PAX = passenger rail, ROW = right of way									

A Tale of Two Projects

The Win-Win Situation

- Union Pacific: improved service, opportunity for growth, tracks with cost-effective grade separation and safety features
- The public: high performance passenger rail service, separation from hazmat, economic development opportunities, traffic reduction

Freight Relocation Benefits

Additional benefits

- More expensive as development expands east
- Infrastructure improvement
- Regulatory compliance

New Alignment Speed Range Time Savings Estimate

*one hour saved = \$709 (2023 dollars); Base current speed: 25mph, 30 trainsets per day; 300 operational days per year (Austin-San Antonio Commuter Rail Project: Final Financial & Economic Benefits Report. March 2007)

Operational Speeds	Time & Cost Savings	ALT 4A	ALT 4B	ALT 4C
Low	Time Saved (low)	0.45 hr	0.31 hr	0.10 hr
(28 mph)	One Year Cost Savings (low)	\$2.89 million	\$1.98 million	\$0.61 million
High	Time Saved	1.32	1.21	1.04
(35.5 mph)	One Year Cost Savings (low)	\$518.4 million	\$222.2 million	\$18.2 million

Costs

How much might this project cost?

- Weighted average: \$39M per mile
- Est. Project cost:
 - ALT 4a: \$7.7B to \$9.8B
 - ALT 4b: \$7.3B to \$9.3B
 - ALT 4c: \$7.2B to \$9.2B

	Cost per Mile
TRE	\$4.8M
CalTrain	\$47.8M
LSRD estimate	\$8.6M
TEXRail	\$39.8M
Silver Line	\$73.1M
Red Line	\$7.3M

Benefits

Benefits	Amount per year
Time savings	\$4.3 million - \$8.8 million
Driver cost savings	\$24,770 - \$41,551
Congestion mitigation	\$25.14 per person
Tax revenue generation	\$639 million
Extended highway life	Maintenance savings: \$15.3 million Construction savings: \$587 million
Job creation	2,327 - 2,821 sustained jobs 51,117 project-related jobs
Decreased toxic emissions	\$1.9 million - \$2.3 million
Cost avoidance of car crashes	\$78 million

Costs

How much might this project cost?

- Average: \$54M per mile
- Est. Project cost: \$7-10 billion

	Cost per Mile
TRE	\$4.8M
CalTrain	\$47.8M
LSRD estimate	\$8.6M
TEXRail	\$39.8M
Silver Line	\$73.1M
Red Line	\$7.3M

